Skip to main content Accessibility help
×
Home

Laboratory radiative accretion shocks on GEKKO XII laser facility for POLAR project

  • L. Van Box Som (a1) (a2) (a3), É. Falize (a1) (a3), M. Koenig (a4) (a5), Y. Sakawa (a6), B. Albertazzi (a4), P. Barroso (a7), J.-M. Bonnet-Bidaud (a3), C. Busschaert (a1), A. Ciardi (a2), Y. Hara (a6), N. Katsuki (a8), R. Kumar (a6), F. Lefevre (a4), C. Michaut (a9), Th. Michel (a4), T. Miura (a8), T. Morita (a8), M. Mouchet (a9), G. Rigon (a4), T. Sano (a6), S. Shiiba (a8), H. Shimogawara (a6) and S. Tomiya (a10)...

Abstract

A new target design is presented to model high-energy radiative accretion shocks in polars. In this paper, we present the experimental results obtained on the GEKKO XII laser facility for the POLAR project. The experimental results are compared with 2D FCI2 simulations to characterize the dynamics and the structure of plasma flow before and after the collision. The good agreement between simulations and experimental data confirms the formation of a reverse shock where cooling losses start modifying the post-shock region. With the multi-material structure of the target, a hydrodynamic collimation is exhibited and a radiative structure coupled with the reverse shock is highlighted in both experimental data and simulations. The flexibility of the laser energy produced on GEKKO XII allowed us to produce high-velocity flows and study new and interesting radiation hydrodynamic regimes between those obtained on the LULI2000 and Orion laser facilities.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Laboratory radiative accretion shocks on GEKKO XII laser facility for POLAR project
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Laboratory radiative accretion shocks on GEKKO XII laser facility for POLAR project
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Laboratory radiative accretion shocks on GEKKO XII laser facility for POLAR project
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: L. Van Box Som, CEA-DAM-DIF, F-91297 Arpajon, France. Email: lucile.vanboxsom@cea.fr

References

Hide All
1. Frank, J. King, A. and Raine, D. J. Accretion Power in Astrophysics (Cambridge University Press, 2002).
2. Maoz, D. Mannucci, F. and Nelemans, G. Ann. Rev. Astron. Astrophys. 52, 107 (2014).
3. Riess, A. G. Filippenko, A. V. Challis, P. Clocchiatti, A. Diercks, A. Garnavich, P. M. Gilliland, R. L. Hogan, C. J. Jha, S. Kirshner, R. P. Leibundgut, B. Phillips, M. M. Reiss, D. Schmidt, B. P. Schommer, R. A. Smith, R. C. Spyromilio, J. Stubbs, C. Suntzeff, N. B. and Tonry, J. Astrophys. J. 116, 1009 (1998).
4. Warner, B. Cataclysmic Variable Stars (Cambridge Astrophysics) (Cambridge University Press, 1995).
5. Cropper, M. Space Sci. Rev. 54, 195 (1990).
6. Wu, K. Space Sci. Rev. 93, 611 (2000).
7. Ramsay, G. and Cropper, M. Mon. Not. R. Astron. Soc. 347, 497 (2004).
8. Bonnet-Bidaud, J. M. Mouchet, M. Busschaert, C. Busschaert, C. Falize, E. and Michaut, C. Astron. Astrophys. 579, A24 (2015).
9. Mouchet, M. Bonnet-Bidaud, J. M. Van Box Som, L. Falize, E. Buckley, D. A. H. Breytenbach, H. Ashley, R. P. Marsh, T. R. and Dhillon, V. S. Astron. Astrophys. 600, A53 (2017).
10. Van Box Som, L. Falize, E. Bonnet-Bidaud, J. M. Mouchet, M. Busschaert, C. and Ciardi, A. Mon. Not. R. Astron. Soc. 473, 3158 (2018).
11. Falize, É. Bouquet, S. and Michaut, C. Astrophys. Space Sci. 322, 107 (2009).
12. Falize, É. Michaut, C. and Bouquet, S. Astrophys. J. 730, 96 (2011).
13. Falize, É. Dizière, A. and Loupias, B. Astrophys. Space Sci. 336, 201 (2011).
14. Ryutov, D. D. Drake, R. P. and Remington, B. A. Astrophys. J. Series 127, 465 (2000).
15. Korneev, Ph. d’Humières, E. and Tikhonchuk, V. Phys. Rev. E 91, 043107 (2015).
16. Falize, É. Loupias, B. Ravasio, A. Gregory, C. D. Dizière, A. Koenig, M. Michaut, C. Cavet, C. Barroso, P. Leidinger, J.-P. Ribeyre, X. Breil, J. Takabe, H. Sakawa, Y. Kuramitsu, Y. Morita, T. Woolsey, N. C. Nazarov, W. and Pikuz, S. Astrophys. Space Sci. 336, 81 (2011).
17. Falize, É. Ravasio, A. Loupias, B. Dizière, A. Gregory, C. D. Michaut, C. Busschaert, C. Cavet, C. and Koenig, M. High Energy Density Physics 8, 1 (2012).
18. Cross, J. E. Gregori, G. Foster, J. M. Graham, P. Bonnet-Bidaud, J.-M. Busschaert, C. Charpentier, N. Danson, C. N. Doyle, H. W. Drake, R. P. Fyrth, J. Gumbrell, E. T. Koenig, M. Krauland, C. Kuranz, C. C. Loupias, B. Michaut, C. Mouchet, M. Patankar, S. Skidmore, J. Spindloe, C. Tubman, E. R. Woolsey, N. Yurchak, R. and Falize, È. Nat. Commun. 7, 11899 (2016).
19. Krauland, C. M. Drake, R. P. Kuranz, C. C. Sweeney, R. Grosskopf, M. Klein, S. Gillespie, R. Keiter, P. A. Loupias, B. and Falize, E. Phys. Plasmas 20, 056502 (2013).
20. Krauland, C. M. Drake, R. P. Kuranz, C. C. Loupias, B. Plewa, T. Huntington, C. M. Kaczala, D. N. Klein, S. Sweeney, R. Young, R. P. Falize, E. Villette, B. and Keiter, P. A. Astrophys. J. Lett. 762, L2 (2013).
21. Atzeni, S. and Meyer-ter-Vehn, J. The Physics of Inertial Fusion. Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford University Press, 2004).
22. Schurtz, G. P. Nicolaï, P. D. and Busquet, M. Phys. Plasmas 7, 4238 (2000).
23. Busschaert, C. Falize, É. Loupias, B. Michaut, C. Ravasio, A. Pelka, A. Yurchak, R. and Koenig, M. New J. Phys. 15, 035020 (2013).
24. Gänsicke, B. T. Beuermann, K. and de Martino, D. Astron. Astrophys. 303, 127 (1995).
25. Albertazzi, B. Falize, É. Yurchak, R. Pelka, A. Brack, F. Kroll, F. Yurchak, R. Brambrink, E. Mabey, P. Ozaki, N. Pikuz, S. Van Box Som, L. Bonnet-Bidaud, J. M. Cross, J. E. Filippov, E. Gregori, G. Kodama, R. Mouchet, M. Morita, T. Sakawa, Y. Drake, R. P. Kuranz, C. C. Manuel, M. J.-E. Li, C. Tzeferacos, P. Lamb, D. Schramm, U. and Koenig, M. High Power Laser Sci. Eng. (2018) accepted.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed