Skip to main content Accessibility help
×
Home

Ion motion effects on the generation of short-cycle relativistic laser pulses during radiation pressure acceleration

  • W. P. Wang, X. M. Zhang, X. F. Wang, X. Y. Zhao, J. C. Xu, Y. H. Yu, L. Q. Yi, Y. Shi, L. G. Zhang, T. J. Xu, C. Liu, Z. K. Pei and B. F. Shen...

Abstract

The effects of ion motion on the generation of short-cycle relativistic laser pulses during radiation pressure acceleration are investigated by analytical modeling and particle-in-cell simulations. Studies show that the rear part of the transmitted pulse modulated by ion motion is sharper compared with the case of the electron shutter only. In this study, the ions further modulate the short-cycle pulses transmitted. A 3.9 fs laser pulse with an intensity of $1.33\times 10^{21}\ {\rm W}\ {\rm cm}^{-2}$ is generated by properly controlling the motions of the electron and ion in the simulations. The short-cycle laser pulse source proposed can be applied in the generation of single attosecond pulses and electron acceleration in a small bubble regime.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ion motion effects on the generation of short-cycle relativistic laser pulses during radiation pressure acceleration
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ion motion effects on the generation of short-cycle relativistic laser pulses during radiation pressure acceleration
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ion motion effects on the generation of short-cycle relativistic laser pulses during radiation pressure acceleration
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .

Corresponding author

Correspondence to: Wenpeng Wang, State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China. Email: wwpvin@hotmail.com

References

Hide All
1. Mourou, G. A. Tajima, T.  and Bulanov, S. V. Rev. Modern Phys. 78, 309 (2006).
2. Chvykov, V. Rousseau, P. Reed, S. Kalinchenko, G.  and Yanovsky, V. Op. Lett. 31, 1456 (2006).
3. Yanovsky, V. Chvykov, V. Kalinchenko, G. Rousseau, P. Planchon, T. Matsuoka, T. Maksimchuk, A. Nees, J. Cheriaux, G. Mourou, G. and Krushelnick, K. Opt. Express 16, 2109 (2008).
4. Tabak, M. Hammer, J. Glinsky, M. E. Kruer, W. L. Wilks, S. C. Woodworth, J. Campbell, E. M. Perry, M. D. and Mason, R. J. Phys. Plasmas 1, 1626 (1994).
5. Naumova, N. Schlegel, T. Tikhonchuk, V. T. Labaune, C. Sokolov, I. V. and Mourou, G. Phys. Rev. Lett. 102, 025002 (2009).
6. Bulanov, S. V. Esirkepov, T. Z. Khoroshkov, V. S. Kuznetsov, A. V. and Pegoraro, F. Phys. Lett. A 299, 240 (2002).
7. Bulanov, S. V. and Khoroshkov, V. S. Plasma Phys. Rep. 28, 453 (2002).
8. Remington, B. A. Science 284, 1488 (1999).
9. Wang, W. P. Zhang, H. Wu, B. Jiao, C. Y. Wu, Y. C. Zhu, B. Dong, K. G. Hong, W. Gu, Y. Q. Shen, B. F. Xu, Y. Leng, Y. X. Li, R. X. and Xu, Z. Z. Appl. Phys. Lett. 101, 214103 (2012).
10. Wang, W. P. Shen, B. F. Zhang, H. Xu, Y. Li, Y. Y. Lu, X. M. Wang, C. Liu, Y. Q. Lu, J. X. Shi, Y. Leng, Y. X. Liang, X. Y. Li, R. X. Wang, N. Y. and Xu, Z. Z. Appl. Phys. Lett. 102, 224101 (2013).
11. Mackinnon, A. Sentoku, Y. Patel, P. Price, D. Hatchett, S. Key, M. Andersen, C. Snavely, R. and Freeman, R. Phys. Rev. Lett. 88, 215006 (2002).
12. Henig, A. Kiefer, D. Markey, K. Gautier, D. C. Flippo, K. A. Letzring, S. Johnson, R. P. Shimada, T. Yin, L. Albright, B. J. Bowers, K. J. Fernańdez, J. C. Rykovanov, S. G. Wu, H. C. Zepf, M. Jung, D. Liechtenstein, V. K. Schreiber, J. Habs, D. and Hegelich, B. M. Phys. Rev. Lett. 103, 045002 (2009).
13. Henig, A. Steinke, S. Schnürer, M. Sokollik, T. Hörlein, R. Kiefer, D. Jung, D. Schreiber, J. Hegelich, B. M. Yan, X. Q. Meyer-ter-Vehn, J. Tajima, T. Nickles, P. V. Sandner, W. and Habs, D. Phys. Rev. Lett. 103, 245003 (2009).
14. Neely, D. Foster, P. Robinson, A. Lindau, F. Lundh, O. Persson, A. Wahlstrom, C. G. and McKenna, P. Appl. Phys. Lett. 89, 021502 (2006).
15. Ceccotti, T. Lévy, A. Popescu, H. Réau, F. D’Oliveira, P. Monot, P. Geindre, J. Lefebvre, E. and Martin, P. Phys. Rev. Lett. 99, 185002 (2007).
16. Gaillard, S. A. Kluge, T. Flippo, K. A. Bussmann, M. Gall, B. Lockard, T. Geissel, M. Offermann, D. T. Schollmeier, M. Sentoku, Y. and Cowan, T. E. Phys. Plasmas 18, 056710 (2011).
17. Zigler, A. Palchan, T. Bruner, N. Schleifer, E. Eisenmann, S. Botton, M. Henis, Z. Pikuz, S. A. Faenov, A. Y. Jr Gordon, D. and Sprangle, P. Phys. Rev. Lett. 106, 134801 (2011).
18. Ogura, K. Nishiuchi, M. Pirozhkov, A. S. Tanimoto, T. Sagisaka, A. Esirkepov, T. Z. Kando, M. Shizuma, T. Hayakawa, T. Kiriyama, H. Shimomura, T. Kondo, S. Kanazawa, S. Nakai, Y. Sasao, H. Sasao, F. Fukuda, Y. Sakaki, H. Kanasaki, M. Yogo, A. Bulanov, S. V. Bolton, P. R. and Kondo, K. Optics Lett. 37, (2012).
19. Kaluza, M. Schreiber, J. Santala, M. I. K. Tsakiris, G. D. Eidmann, K. Meyer-ter-Vehn, J. and Witte, K. J. Phys. Rev. Lett. 93, 045003 (2004).
20. Xu, Y. Wang, J. Huang, Y. Li, Y. Lu, X. and Leng, Y. High Power Laser Sci. Eng. 1, 98 (2013).
21. Tavella, F. Nomura, Y. Veisz, L. Pervak, V. Marcinkevicius, A. and Krausz, F. Optics Lett. 32, 2227 (2007).
22. Ji, L. L. Shen, B. F. Zhang, X. M. Wang, F. C. Jin, Z. Y. Xia, C. Q. Wen, M. Wang, W. P. Xu, J. C. and Yu, M. Y. Phys. Rev. Lett. 103, 215005 (2009).
23. Wittmann, T. Geindre, J. P. Audebert, P. Marjoribanks, R. S. Rousseau, J. P. Burgy, F. Douillet, D. Lefrou, T. Ta Phuok, K. and Chambaret, J. P. Rev. Sci. Instrum. 77, 083109 (2006).
24. Wu, H.-C. Sheng, Z.-M. and Zhang, J. Appl. Phys. Lett. 87, 201502 (2005).
25. Brabec, T. and Krausz, F. Rev. Modern Phys. 72, 545 (2000).
26. Pukhov, A. and Meyer-ter-Vehn, J. Appl. Phys. B 74, 355 (2002).
27. Schmid, K. Veisz, L. Tavella, F. Benavides, S. Tautz, R. Herrmann, D. Buck, A. Hidding, B. Marcinkevicius, A. Schramm, U. Geissler, M. Meyer-ter-Vehn, J. Habs, D. and Krausz, F. Phys. Rev. Lett. 102, 124801 (2009).
28. Shen, B. F. and Xu, Z. Z. Phys. Rev. E 64, 056406 (2001).
29. Esirkepov, T. Borghesi, M. Bulanov, S. V. Mourou, G. and Tajima, T. Phys. Rev. Lett. 92, 175003 (2004).
30. Macchi, A. Cattani, F. Liseykina, T. V. and Cornolti, F. Phys. Rev. Lett. 94, 165003 (2005).
31. Yan, X. Q. Lin, C. Sheng, Z. M. Guo, Z. Y. Liu, B. C. Lu, Y. R. Fang, J. X. and Chen, J. E. Phys. Rev. Lett. 100, 135003 (2008).
32. Zhang, X. Shen, B. Li, X. Jin, Z. Wang, F. and Wen, M. Phys. Plasmas 14, 123108 (2007).
33. Robinson, A. P. L. Zepf, M. Kar, S. Evans, R. G. and Bellei, C. New J. Phys. 10, 013021 (2008).
34. Qiao, B. Zepf, M. Borghesi, M. and Geissler, M. Phys. Rev. Lett. 102, 145002 (2009).
35. Wang, W. P. Shen, B. F. Zhang, X. M. Ji, L. L. Wen, M. Xu, J. C. Yu, Y. H. Li, Y. L. and Xu, Z. Z. Phys. Plasmas 18, 013103 (2011).
36. Yu, T.-P. Pukhov, A. Shvets, G. and Chen, M. Phys. Rev. Lett. 105, 065002 (2010).
37. Vshivkov, V. A. Naumova, N. M. Pegoraro, F. and Bulanov, S. V. Phys. Plasmas 5, 2727 (1998).
38. Wang, W. P. Shen, B. F. Zhang, X. M. Ji, L. L. Yu, Y. H. Yi, L. Q. Wang, X. F. and Xu, Z. Z. Phys. Rev. Special Topics - Accelerators and Beams 15, 081302 (2012).
39. Pegoraro, F. and Bulanov, S. V. Phys. Rev. Lett. 99, 065002 (2007).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed