Skip to main content Accessibility help
×
Home

In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality

  • Jiangming Xu (a1) (a2), Jun Ye (a1), Hu Xiao (a1) (a2), Jinyong Leng (a1) (a2), Wei Liu (a1) and Pu Zhou (a1) (a2)...

Abstract

High power superfluorescent fiber sources (SFSs), which could find wide applications in many fields such as middle infrared laser generation, Raman fiber laser pumping and spectral beam combination, have experienced a flourishing time in recent years for its unique properties, such as short coherence length and high temporal stability. The challenge for performance scalability of powerful SFS mainly lies on the physical issues including parasitic laser oscillation and modal instability (MI). In this contribution, by employing in-band pumping avenue and high-order transverse-mode management, we explore a high power SFS with record power, near-diffraction-limited beam quality and spectral manipulation flexibility. An ultimate output power of 3.14 kW can be obtained with high temporal stability and a beam quality of $M^{2}=1.59$ for the amplified light. Furthermore, the dynamics of spectral evolutions, including red-shifting of central wavelength and unsymmetrical broadening in spectral wings, of the main amplifier with different seed linewidths are investigated contrastively. Benefiting from the unique high pump brightness and high MI threshold of in-band pumping scheme, the demonstrated system also manifests promising performance scaling potential.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: P. Zhou, College of Optoelectronic Science and Engineering, National University of Defense Technology, No. 109 Deya Road, Changsha 410073, China. Email: zhoupu203@163.com

References

Hide All
1. Martin-Lopez, S. Gonzalez-Herraez, M. Carrasco-Sanz, A. Vanholsbeeck, F. Coen, S. Fernandez, H. Solis, J. Corredera, P. and Hernanz, M. L. Meas. Sci. Technol. 17, 1014 (2006).
2. Wang, P. Sahu, J. K. and Clarkson, W. A. IEEE J. Sel. Top. Quant. Electron. 13, 580 (2007).
3. Zhang, H. Shen, X. Hao, H. Li, Q. and Gong, M. High Power Laser Sci. Eng. 4, e31 (2016).
4. Xu, J. Zhou, P. Liu, W. Leng, J. Xiao, H. Ma, P. Wu, J. Zhang, H. Chen, J. and Liu, Z. IEEE J. Sel. Top. Quant. Electron. 24, 0900710 (2018).
5. Yan, P. Sun, J. Li, D. Gong, M. and Xiao, Q. Opt. Commun. 380, 250 (2016).
6. Riumkin, K. E. Mel’kumov, M. A. Bufetov, I. A. Shubin, A. V. Firstov, S. V. Khopin, V. F. Gur’yanov, A. N. and Dianov, E. M. Opt. Lett. 37, 4817 (2012).
7. Luo, H. Li, J. Wang, L. He, Y. Li, H. and Liu, Y. IEEE Photon. Technol. Lett. 26, 2287 (2014).
8. Redding, B. Ahmadi, P. Mokan, V. Seifert, M. Choma, M. A. and Cao, H. Opt. Lett. 40, 4607 (2015).
9. Maestre, H. Torregrosa, A. J. and Capmany, J. Opt. Express 24, 8581 (2016).
10. Shang, Y. Xu, J. Wang, P. Li, X. Zhou, P. and Xu, X. Opt. Express 24, 21684 (2016).
11. Jin, A. Zhou, H. Zhou, X. Hou, J. and Jiang, Z. IEEE Photon. J. 7, 1600409 (2015).
12. Xu, J. Lou, Z. Ye, J. Wu, J. Leng, J. Xiao, H. Zhang, H. and Zhou, P. Opt. Express 25, 5609 (2017).
13. Xu, J. Ye, J. Liu, W. Wu, J. Zhang, H. Leng, J. and Zhou, P. Photon. Res. 5, 598 (2017).
14. Pan, W. Zhang, L. Zhou, J. Yang, X. and Feng, Y. Opt. Lett. 42, 5162 (2017).
15. Zheng, Y. Yang, Y. Wang, J. Hu, M. Liu, G. Zhao, X. Chen, X. Liu, K. Zhao, C. He, B. and Zhou, J. Opt. Express 24, 12063 (2016).
16. Wang, P. Sahu, J. K. and Clarkson, W. A. Opt. Lett. 31, 3116 (2006).
17. An, Y. Yu, Y. Cao, J. Huang, Z. Guo, S. and Chen, J. Laser Phys. Lett. 13, 025105 (2016).
18. Chen, W. Shen, D. Zhao, T. and Yang, X. Opt. Express 20, 14542 (2012).
19. Hu, Z. Yan, P. Liu, Q. Ji, E. Xiao, Q. and Gong, M. Appl. Phys. B 118, 101 (2015).
20. Jiang, M. Ma, P. Huang, L. Xu, J. Zhou, P. and Gu, X. High Power Laser Sci. Eng. 5, e30 (2017).
21. Zhou, P. Huang, L. Xu, J. Ma, P. Su, R. Wu, J. and Liu, Z. Sci. China Tech. Sci. 60, 1784 (2017).
22. Schmidt, O. Rekas, M. Wirth, C. Rothhardt, J. Rhein, S. Kliner, A. Strecker, M. Schreiber, T. Limpert, J. Eberhardt, R. and Tünnermann, A. Opt. Express 19, 4421 (2011).
23. Yan, P. Sun, J. Li, D. Wang, X. Huang, Y. Gong, M. and Xiao, Q. Opt. Express 24, 19940 (2016).
24. Wang, P. and Clarkson, W. A. Opt. Lett. 32, 2605 (2007).
25. Ma, P. Tao, R. Wang, X. Zhou, P. and Liu, Z. IEEE Photon. Technol. Lett. 27, 879 (2015).
26. Schmidt, O. Kliner, A. Rekas, M. Wirth, C. Rhein, S. Schreiber, T. Eberhardt, R. and Tuennermann, A. in Proc. Front. Opt. (OSA, 2011), paper FTuW3.
27. Xu, J. Huang, L. Leng, J. Xiao, H. Guo, S. Zhou, P. and Chen, J. Opt. Express 23, 5485 (2015).
28. Qi, Y. Lei, M. Liu, C. He, B. and Zhou, J. in Proc. CLEO: Appl. Technol. (OSA, 2015), paper ATu4M-4.
29. Xu, J. Liu, W. Leng, J. Xiao, H. Guo, S. Zhou, P. and Chen, J. Opt. Lett. 40, 2973 (2015).
30. Xu, J. Xiao, H. Leng, J. Zhang, H. Zhou, P. and Chen, J. Laser Phys. Lett. 13, 105101 (2016).
31. Eidam, T. Wirth, C. Jauregui, C. Stutzki, F. Jansen, F. Otto, H. J. Schmidt, O. Schreiber, T. Limpert, J. and Tünnermann, A. Opt. Express 19, 13218 (2011).
32. Jauregui, C. Limpert, J. and Tünnermann, A. Nat. Photon. 7, 861 (2013).
33. Jebali, M. A. Maran, J. N. and Larochelle, S. Opt. Lett. 39, 3974 (2014).
34. Zervas, M. N. and Codemard, C. A. IEEE J. Sel. Top. Quant. Electron. 20, 219 (2014).
35. Zhou, P. Xiao, H. Leng, J. Xu, J. Chen, Z. Zhang, H. and Liu, Z. J. Opt. Soc. Am. B 34, A29 (2017).
36. Jin, X. Lou, Z. Chen, Y. Zhou, P. Zhang, H. Xiao, H. and Liu, Z. Sci. Rep. 7, 42402 (2017).
37. Tao, R. Ma, P. Wang, X. Zhou, P. and Liu, Z. IEEE J. Quant. Electron. 51, 1600106 (2015).
38. Xiao, H. Zhou, P. Wang, X. Xu, X. and Liu, Z. Laser Phys. Lett. 10, 065102 (2013).
39. Zhou, H. Jin, A. Chen, Z. Zhang, B. Zhou, X. Chen, S. Hou, J. and Chen, J. Opt. Lett. 40, 3810 (2015).
40. Wang, X. Jin, X. Zhou, P. Wang, X. Xiao, H. and Liu, Z. Opt. Express 23, 3382 (2015).
41. Liu, W. Ma, P. Lv, H. Xu, J. Zhou, P. and Jiang, Z. Opt. Express 24, 8708 (2016).
42. Huang, L. Kong, L. Leng, J. Zhou, P. Guo, S. and Cheng, X. J. Opt. Soc. Am. B 33, 1030 (2016).
43. Tao, R. Su, R. Ma, P. Wang, X. and Zhou, P. Laser Phys. Lett. 14, 025101 (2017).
44. Kong, L. Leng, J. Zhou, P. and Jiang, Z. Opt. Express 25, 23437 (2017).
45. Huang, L. Xu, J. Ye, J. Liu, X. Zhang, H. Wang, X. and Zhou, P. IEEE J. Sel. Top. Quant. Electron. 24, 0900608 (2018).
46. Kablukov, S. I. Zlobina, E. A. Podivilov, E. V. and Babin, S. A. Opt. Lett. 37, 2508 (2012).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality

  • Jiangming Xu (a1) (a2), Jun Ye (a1), Hu Xiao (a1) (a2), Jinyong Leng (a1) (a2), Wei Liu (a1) and Pu Zhou (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed