Skip to main content Accessibility help
×
Home

High-peak-power temporally shaped nanosecond fiber laser immune to SPM-induced spectral broadening

  • Rongtao Su (a1) (a2) (a3), Pengfei Ma (a1) (a2) (a3), Pu Zhou (a1) (a2) (a3), Zilun Chen (a1) (a2) (a3), Xiaolin Wang (a1) (a2) (a3), Yanxing Ma (a1) (a2) (a3), Jian Wu (a1) (a2) (a3) and Xiaojun Xu (a1) (a2) (a3)...

Abstract

High-peak-power transform-limited narrow-linewidth nanosecond all-fiber lasers are desired in a range of applications. However, their linewidths will be broadened by self-phase modulation (SPM). We propose a novel concept that generates transform-limited laser pulses by temporally shaping the pulse seed. The impact of the pulse shape on SPM-induced spectral broadening was studied numerically and experimentally. It was found theoretically that the square-shape pulsed laser is immune to SPM-induced spectral broadening. Based on this principle, we built a high-peak-power, linearly polarized, square-shape nanosecond all-fiber laser in a master oscillator power amplifier (MOPA) configuration. Stimulated Brillouin scattering (SBS) limited peak powers of 4.02 kW, 5.06 kW, 6.52 kW and 9.30 kW were obtained at pulse widths of 8 ns, 7 ns, 6 ns and 5 ns. Thanks to the square-shape pulsed seed, the linewidths at maximum peak power remained at 129.5 MHz, 137.6 MHz, 156.2 MHz and 200.1 MHz, respectively, close to the transform-limited values of 110.8 MHz, 126.6 MHz, 147.7 MHz and 177.3 MHz.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High-peak-power temporally shaped nanosecond fiber laser immune to SPM-induced spectral broadening
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High-peak-power temporally shaped nanosecond fiber laser immune to SPM-induced spectral broadening
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High-peak-power temporally shaped nanosecond fiber laser immune to SPM-induced spectral broadening
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to:  P. Zhou, No. 109 Deya Road, Changsha 410073, China. Email: zhoupu203@163.com

References

Hide All
1. Lee, W. Geng, J. Jiang, S. and Yu, A. W. Opt. Lett. 43, 2264 (2018).
2. Zhang, X. Diao, W. Liu, Y. Zhu, X. Yang, Y. Liu, J. Hou, X. and Chen, W. Appl. Opt. 53, 2465 (2014).
3. Liu, A. Norsen, M. A. and Mead, R. D. Opt. Lett. 30, 67 (2005).
4. He, J. Di, L. Xu, L. Beresna, M. Zervas, M. N. Alam, S. and Brambilla, G. Opt. Express 26, 6554 (2018).
5. Shi, W. Leigh, M. A. Zong, J. Yao, Z. Nguyen, D. T. Chavez-Pirson, A. and Peyghambarian, N. IEEE J. Sel. Top. Quantum Electron. 15, 377 (2009).
6. Richardson, D. J. Nilsson, J. and Clarkson, W. A. J. Opt. Soc. Am. B 27, 63 (2010).
7. Fu, S. Shi, W. Feng, Y. Zhang, L. Yang, Z. Xu, S. Zhu, X. Norwood, R. A. and Peyghambarian, N. J. Opt. Soc. Am. B 34, A49 (2017).
8. Shi, W. Fang, Q. Zhu, X. Norwood, R. A. and Peyghambarian, N. Appl. Opt. 53, 6554 (2014).
9. Yang, C. Xu, S. Yang, Q. Lin, W. Mo, S. Li, C. Feng, Z. Chen, D. Yang, Z. and Jiang, Z. Appl. Phys. Express 7, 062702 (2014).
10. Geng, J. Wang, Q. Jiang, Z. Luo, T. Jiang, S. and Czarnecki, G. Opt. Lett. 36, 2293 (2011).
11. Leigh, M. Shi, W. Zong, J. Wang, J. Jiang, S. and Peyghambarian, N. Opt. Lett. 32, 897 (2007).
12. Fang, Q. Shi, W. Petersen, E. Khanh, K. Chavez-Pirson, A. and Peyghambarian, N. IEEE Photon. Technol. Lett. 24, 353 (2012).
13. Su, R. T. Wang, X. L. Zhou, P. and Xu, X. J. Laser Phys. Lett. 10, 015105 (2013).
14. Su, R. Zhou, P. Wang, X. , H. and Xu, X. Opt. Commun. 316, 86 (2014).
15. Kobyakov, A. Sauer, M. and Chowdhury, D. Adv. Opt. Photon. 2, 1 (2010).
16. Hildebrandt, M. Büsche, S. Weßels, P. Frede, M. and Kracht, D. Opt. Express 16, 15970 (2008).
17. Huang, L. Wu, H. Li, R. Li, L. Ma, P. Wang, X. Leng, J. and Zhou, P. Opt. Lett. 42, 1 (2017).
18. Zhang, L. Cui, S. Liu, C. Zhou, J. and Feng, Y. Opt. Express 21, 5456 (2013).
19. Robin, C. Dajani, I. and Pulford, B. Opt. Lett. 39, 666 (2014).
20. Li, M. Chen, X. Wang, J. Gray, S. Liu, A. Demeritt, J. A. Ruffin, A. B. Crowley, A. M. Walton, D. T. and Zenteno, L. A. Opt. Express 15, 8290 (2007).
21. Su, R. Zhou, P. Wang, X. , H. and Xu, X. Opt. Laser Technol. 57, 1 (2014).
22. Agrawal, G. P. Nonlinear Fiber Optics (Academic, New York, 2013).
23. Shi, W. Petersen, E. B. Nguyen, D. T. Yao, Z. Chavez-Pirson, A. Peyghambarian, N. and Yu, J. Opt. Lett. 36, 3575 (2011).
24. Xu, C. Mollenauer, L. and Liu, X. Electron. Lett. 38, 1578 (2002).
25. Munroe, M. J. Hamamoto, M. Y. and Dutton, D. A. Proc. SPIE 7195, 71952N (2009).
26. Su, R. Zhou, P. Ma, P. , H. and Xu, X. Appl. Opt. 52, 7331 (2013).
27. Malinowski, A. Vu, K. T. Chen, K. K. Nilsson, J. Jeong, Y. Alam, S. Lin, D. and Richardson, D. J. Opt. Express 17, 20927 (2009).
28. Schimpf, D. N. Ruchert, C. Nodop, D. Limpert, J. Tünnermann, A. and Salin, F. Opt. Express 16, 17637 (2008).
29. Xu, S. Yang, Z. Zhang, W. Wei, X. Qian, Q. Chen, D. Zhang, Q. Shen, S. Peng, M. and Qiu, J. Opt. Lett. 36, 3708 (2011).
30. Su, R. Yang, B. Xi, X. Zhou, P. Wang, X. Ma, Y. Xu, X. and Chen, J. Opt. Express 25, 23275 (2017).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed