Skip to main content Accessibility help
×
Home

High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression

  • Pengfei Ma (a1) (a2), Hu Xiao (a1) (a2), Daren Meng (a1), Wei Liu (a1), Rumao Tao (a1) (a2), Jinyong Leng (a1) (a2), Yanxing Ma (a1) (a2), Rongtao Su (a1) (a2), Pu Zhou (a1) (a2) and Zejin Liu (a1) (a2)...

Abstract

An all-fiberized and narrow-bandwidth master oscillator power amplification (MOPA) system with record output power of 4 kW level and slope efficiency of 78% is demonstrated. Tandem pumping strategy is tentatively introduced into the narrow-bandwidth MOPA system for thermally induced mode instability (TMI) suppression. The stimulated Brillouin scattering (SBS) effect is balanced by simply using one-stage phase modulation technique. With different phase modulation signals, SBS limited output powers of 336 W, 1.2 kW and 3.94 kW are respectively achieved with spectral bandwidths accounting for 90% power of ${\sim}$ 0.025, 0.17 and ${\sim}$ 0.89 nm. Compared with our previous 976 nm pumping system, TMI threshold is overall boosted to be ${>}$ 5 times in which tandem pumping increases the TMI threshold of ${>}$ 3 times. The beam quality ( $M^{2}$ factor) of the output laser is well within 1.5 below the TMI threshold while it is ultimately saturated to be 1.86 with the influence of TMI at maximal output power. Except for SBS and TMI, stimulated Raman scattering (SRS) effect will be another challenge for further power scaling. In such a high power MOPA system, multi-detrimental effects (SBS, SRS and TMI) will coexist and may be mutual-coupled, which could provide a well platform for further comprehensively investigating and optimizing the high power, narrow-bandwidth fiber amplifiers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: P. Ma and P. Zhou, College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China. Email: zhoupu203@163.com (P. Zhou);shandapengfei@126.com (P. Ma).

References

Hide All
1. Richardson, D. J. Nilsson, J. and Clarkson, W. A. J. Opt. Soc. Am. B 27, B63 (2010).
2. Zervas, M. N. and Codemard, C. A. IEEE J. Sel. Top. Quantum Electron. 20, 0904123S (2014).
3. Shi, W. Fang, Q. Zhu, X.-S. Norwood, R. and Peyghambarian, N. Appl. Opt. 53, 6554 (2014).
4. Dawson, J. W. Messerly, J. M. Beach, R. J. Shverdin, M. Y. Stappaerts, E.A. Sridharan, A. K. Pax, P. H. Heebner, J. E. Siders, C. W. and Barty, C. P. J. Opt. Express 16, 13240 (2008).
5. Otto, H. Jauregui, C. Limpert, J. and Tünnermann, A. Proc. SPIE 9728, 97280E (2016).
6. Zervas, M. Proc. SPIE 10512, 1051205 (2018).
7. Fan, T. Y. IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
8. Liu, Z.-J. Ma, P.-F. Su, R.-T. Tao, R.-M. Ma, Y.-X. Wang, X.-L. and Zhou, P. J. Opt. Soc. Am. B. 34, A7 (2016).
9. Dajani, I. Flores, A. Holten, R. Anderson, B. Pulford, B. and Ehrenreich, T. Proc. SPIE 9728, 972801 (2016).
10. Zheng, Y. Yang, Y.-F. Wang, J.-H. Hu, M. Liu, G.-B. Zhao, X. Chen, X.-L. Liu, K. Zhao, C. He, B. and Zhou, J. Opt. Express 24, 12064 (2016).
11. Huang, L. Wu, H.-S. Li, R.-X. Li, L. Ma, P.-F. Wang, X.-L. Leng, J.-Y. and Zhou, P. Opt. Lett. 42, 1 (2017).
12. Robin, C. Dajani, I. and Pulford, B. Opt. Lett. 39, 666 (2014).
13. Zhang, L. Cui, S.-Z. Liu, C. Zhou, J. and Feng, Y. Opt. Express 21, 5456 (2013).
14. Theeg, T. Sayinc, H. Neumann, J. and Kracht, D. IEEE Photon. Tech. Lett. 24, 1864 (2012).
15. Gray, S. Liu, A. Walton, D. Wang, J. Li, M. Chen, X. Ruffin, A. Demeritt, J. and Zenteno, L. Opt. Express 15, 17044 (2007).
16. Xu, Y. Fang, Q. Qin, Y.-G. Meng, X.-J. and Shi, W. Appl. Opt. 54, 9419 (2015).
17. Huang, Z.-H. Liang, X.-B. Li, C.-Y. Lin, H.-H. Li, Q. Wang, J.-J. and Jing, F. Appl. Opt. 55, 297 (2016).
18. Xu, J.-M. Liu, W. Leng, J.-Y. Xiao, H. Guo, S.-F. Zhou, P. and Chen, J.-B. Opt. Lett. 40, 2973 (2015).
19. Weßels, P. Adel, P. Auerbach, M. Wandt, D. and Fallnich, C. Opt. Express 12, 4443 (2004).
20. Naderi, N. Flores, A. Anderson, B. and Dajani, I. Opt. Lett. 41, 3964 (2016).
21. Harish, A. V. and Nilsson, J. IEEE J. Sel. Top. Quantum Electron. 24, 5100110 (2018).
22. Flores, A. Robin, C. Lanari, A. and Dajani, I. Opt. Express 22, 17735 (2014).
23. Ma, P.-F. Tao, R.-M. Su, R.-T. Wang, X.-L. Zhou, P. and Liu, Z.-J. Opt. Express 24, 4187 (2016).
24. Yu, C. X. Shatrovoy, O. Fan, T. Y. and Taunay, T. F. Opt. Lett. 41, 5202 (2016).
25. Kanskar, M. Zhang, J. Koponen, J. Kimmelma, O. Aallos, V. Hu, I-Ning and Galvanauskas, A. Proc. SPIE 10512, 105120F (2018).
26. Su, R.-T. Tao, R.-M. Wang, X.-L. Zhang, H.-W. Ma, P.-F. Zhou, P. and Xu, X.-J. Laser Phys. Lett. 14, 085102 (2017).
27. Brar, K. Savage-Leuchs, M. Henrie, J. Courtney, S. Dilley, C. Afzal, R. and Honea, E. Proc. SPIE 8961, 89611R (2014).
28. Beier, F. Hupel, C. Kuhn, S. Hein, S. Nold, J. Proske, F. Sattler, B. Liem, A. Jauregui, C. Limpert, J. Haarlammert, N. Schreiber, T. Eberhardt, R. and Tünnermann, A. Opt. Express 25, 14892 (2017).
29. Platonov, N. Yagodkin, R. Cruz, J. D. L. Yusim, A. and Gapontsev, V. Proc. SPIE 10512, 105120E (2018).
30. Smith, A. V. and Smith, J. J. Opt. Express 19, 10180 (2011).
31. Ward, B. Robin, C. and Dajani, I. Opt. Express 20, 11407 (2012).
32. Laurila, M. Jørgensen, M. Hansen, K. Alkeskjold, T. Broeng, J. and Lægsgaard, J. Opt. Express 20, 5742 (2012).
33. Tao, R.-M. Wang, X.-L. and Zhou, P. IEEE J. Sel. Top. Quantum Electron. 24, 0903319 (2018).
34. Jauregui, C. Eidam, T. Otto, H. Stutzki, F. Jansen, F. Limpert, J. and Tünnermann, A. Opt. Express 20, 12912 (2012).
35. Smith, A. and Smith, J. Opt. Express 21, 15168 (2013).
36. Eznaveh, Z. Galmiche, G. Lopez, E. and Correa, R. Proc. SPIE 9344, 93442G (2015).
37. Jauregui, C. Otto, H. Stutzki, F. Jansen, F. Limpert, J. and Tünnermann, A. Opt. Express 21, 19375 (2013).
38. Richardson, D. J. Nilsson, J. and Clarkson, W. A. J. Opt. Soc. Am. B 27, B63 (2010).
39. Wirth, C. Schmidt, O. Kliner, A. Schreiber, T. Eberhardt, R. and Tünnermann, A. Opt. Lett. 36, 3061 (2011).
40. Xiao, H. Leng, J.-Y. Zhang, H.-W. Huang, L. Xu, J.-M. and Zhou, P. Appl. Opt. 54, 8166 (2015).
41. Zhou, P. Xiao, H. Leng, J.-Y. Xu, J.-M. Chen, Z.-L. Zhang, H.-W. and Liu, Z.-J. J. Opt. Soc. Am. B. 34, A29 (2017).
42. Yan, P. Wang, X.-J. Wang, Z.-H. Huang, Y.-S. Li, D. Xiao, Q.-R. and Gong, M.-L. IEEE J. Sel. Top. Quantum Electron. 24, 0902506 (2018).
43. Xu, S.-H. Yang, Z.-M. Zhang, W.-N. Wei, X.-M. Qian, Q. Chen, D.-D. Zhang, Q.-Y. Shen, S.-X. Peng, M.-Y. and Qiu, J.-R. Opt. Lett. 36, 3708 (2011).
44. Li, R.-X. Xiao, H. Leng, J.-Y. Chen, Z.-L. Xu, J.-M. Wu, J. and Zhou, P. Laser Phys. Lett. 14, 125102 (2017).
45. Liu, W. Kuang, W.-J. Jiang, M. Xu, J.-M. Zhou, P. and Liu, Z.-J. Laser Phys. Lett. 13, 035105 (2016).
46. Kuznetsov, A. G. Podivilov, E. V. and Babin, S. A. J. Opt. Soc. Am. B 29, 1231 (2012).
47. Otto, H. Stutzki, F. Jansen, F. Eidam, T. Jauregui, C. Limpert, J. and Tünnermann, A. Opt. Express 20, 15710 (2012).
48. Hu, I.-N. Zhu, C. Zhang, C. Thomas, A. and Galvanauskas, A. Proc. SPIE 8601, 860109 (2013).
49. Tao, R.-M. Ma, P.-F. Wang, X.-L. Zhou, P. and Liu, Z.-J. J. Opt. 18, 065501 (2016).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed