Skip to main content Accessibility help
×
Home

Effect of rear surface fields on hot, refluxing and escaping electron populations via numerical simulations

  • D. R. Rusby (a1), C. D. Armstrong (a1), G. G. Scott (a1), M. King (a2), P. McKenna (a2) and D. Neely (a1) (a2)...

Abstract

After a population of laser-driven hot electrons traverses a limited thickness solid target, these electrons will encounter the rear surface, creating TV/m fields that heavily influence the subsequent hot-electron propagation. Electrons that fail to overcome the electrostatic potential reflux back into the target. Those electrons that do overcome the field will escape the target. Here, using the particle-in-cell (PIC) code EPOCH and particle tracking of a large population of macro-particles, we investigate the refluxing and escaping electron populations, as well as the magnitude, spatial and temporal evolution of the rear surface electrostatic fields. The temperature of both the escaping and refluxing electrons is reduced by 30%–50% when compared to the initial hot-electron temperature as a function of intensity between $10^{19}$ and $10^{21}~~\text{W}/\text{cm}^{2}$ . Using particle tracking we conclude that the highest energy internal hot electrons are guaranteed to escape up to a threshold energy, below which only a small fraction are able to escape the target. We also examine the temporal characteristic of energy changes of the refluxing and escaping electrons and show that the majority of the energy change is as a result of the temporally evolving electric field that forms on the rear surface.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of rear surface fields on hot, refluxing and escaping electron populations via numerical simulations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of rear surface fields on hot, refluxing and escaping electron populations via numerical simulations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of rear surface fields on hot, refluxing and escaping electron populations via numerical simulations
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: D. R. Rusby, Central Laser Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK. Email: rusby1@llnl.gov

References

Hide All
1. Ping, Y. Shepherd, R. Lasinski, B. F. Tabak, M. Chen, H. Chung, H. K. Fournier, K. B. Hansen, S. B. Kemp, A. Liedahl, D. A. Widmann, K. Wilks, S. C. Rozmus, W. and Sherlock, M. Phys. Rev. Lett. 100, 6 (2008).
2. Davies, J. R. Plasma Phys. Control. Fusion 51, 014006 (2009).
3. Gray, R. J. Carroll, D. C. Yuan, X. H. Brenner, C. M. Burza, M. Coury, M. Lancaster, K. L. Lin, X. X. Li, Y. T. Neely, D. Quinn, M. N. Tresca, O. Wahlström, C. G. and McKenna, P. New J. Phys. 16, 113075 (2014).
4. Rusby, D. Gray, R. Butler, N. Dance, R. Scott, G. Bagnoud, V. Zielbauer, B. McKenna, P. and Neely, D. EPJ Web Conf. 167, 02001 (2018).
5. Gray, R. J. Wilson, R. King, M. Williamson, S. D. R. Dance, R. J. Armstrong, C. Brabetz, C. Wagner, F. Zielbauer, B. Bagnoud, V. Neely, D. and McKenna, P. New J. Phys. 20, 033021 (2018).
6. Wilks, S. C. and Kruer, W. L. IEEE J. Quantum Electron. 33, 1954 (1997).
7. Beg, F. N. Bell, A. R. Dangor, A. E. Danson, C. N. Fews, A. P. Glinsky, M. E. Hammel, B. A. Lee, P. Norreys, P. A. and Tatarakis, M. Phys. Plasmas 4, 447 (1997).
8. Haines, M. G. Wei, M. S. Beg, F. N. and Stephens, R. B. Phys. Rev. Lett. 102, 045008 (2009).
9. Malka, G. and Miquel, J. Phys. Rev. Lett. 77, 75 (1996).
10. Tanimoto, T. Habara, H. Kodama, R. Nakatsutsumi, M. Tanaka, K. A. Lancaster, K. L. Green, J. S. Scott, R. H. H. Sherlock, M. Norreys, P. A. Evans, R. G. Haines, M. G. Kar, S. Zepf, M. King, J. Ma, T. Wei, M. S. Yabuuchi, T. Beg, F. N. Key, M. H. Nilson, P. Stephens, R. B. Azechi, H. Nagai, K. Norimatsu, T. Takeda, K. Valente, J. and Davies, J. R. Phys. Plasmas 16 (2009).
11. MacPhee, A. G. Akli, K. U. Beg, F. N. Chen, C. D. Chen, H. Clarke, R. Hey, D. S. Freeman, R. R. Kemp, A. J. Key, M. H. King, J. A. Le Pape, S. Link, A. Ma, T. Y. Nakamura, H. Offermann, D. T. Ovchinnikov, V. M. Patel, P. K. Phillips, T. W. Stephens, R. B. Town, R. Tsui, Y. Y. Wei, M. S. Van Woerkom, L. D. and MacKinnon, A. J. Rev. Sci. Instrum. 79, 10F302 (2008).
12. Chen, H. Wilks, S. C. Kruer, W. L. Patel, P. K. and Shepherd, R. Phys. Plasmas 16, 8 (2009).
13. Chen, C. D. Spectrum and Conversion Efficiency Measurements of Suprathermal Electrons from Relativistic Laser Plasma Interactions, PhD Thesis (2009).
14. Mordovanakis, A. G. Masson-Laborde, P. E. Easter, J. Popov, K. Hou, B. Mourou, G. Rozmus, W. Haines, M. G. Nees, J. and Krushelnick, K. Appl. Phys. Lett. 96, 8 (2010).
15. Maclellan, D. A. Carroll, D. C. Gray, R. J. Booth, N. Burza, M. Desjarlais, M. P. Du, F. Gonzalez-Izquierdo, B. Neely, D. Powell, H. W. Robinson, A. P. L. Rusby, D. R. Scott, G. G. Yuan, X. H. Wahlström, C. G. and McKenna, P. Phys. Rev. Lett. 111, 095001 (2013).
16. McKenna, P. Robinson, A. P. L. Neely, D. Desjarlais, M. P. Carroll, D. C. Quinn, M. N. Yuan, X. H. Brenner, C. M. Burza, M. Coury, M. Gallegos, P. Gray, R. J. Lancaster, K. L. Li, Y. T. Lin, X. X. Tresca, O. and Wahlström, C.-G. Phys. Rev. Lett. 106, 185004 (2011).
17. MacLellan, D. A. Carroll, D. C. Gray, R. J. Booth, N. Burza, M. Desjarlais, M. P. Du, F. Neely, D. Powell, H. W. Robinson, A. P. L. Scott, G. G. Yuan, X. H. Wahlström, C. G. and McKenna, P. Phys. Rev. Lett. 113, 185001 (2014).
18. Brenner, C. M. Mirfayzi, S. R. Rusby, D. R. Armstrong, C. Alejo, A. Wilson, L. A. Clarke, R. Ahmed, H. Butler, N. M. H. Haddock, D. Higginson, A. McClymont, A. Murphy, C. Notley, M. Oliver, P. Allott, R. Hernandez-Gomez, C. Kar, S. McKenna, P. and Neely, D. Plasma Phys. Control. Fusion 58, 014039 (2016).
19. Roth, M. and Schollmeier, M. CERN Yellow Report 2016‐001, 231 (2016).
20. Grismayer, T. Mora, P. Adam, J. C. and Héron, A. Phys. Rev. E 77, 066407 (2008).
21. Mackinnon, A. J. Sentoku, Y. Patel, P. K. Price, D. W. Hatchett, S. Key, M. H. Andersen, C. Snavely, R. and Freeman, R. R. Phys. Rev. Lett. 88, 2150061 (2002).
22. Neely, D. Foster, P. Robinson, A. Lindau, F. Lundh, O. Persson, A. Wahlström, C. G. and McKenna, P. Appl. Phys. Lett. 89, 021502 (2006).
23. Robinson, A. P. L. Zepf, M. Kar, S. Evans, R. G. and Bellei, C. New J. Phys. 10, 013021 (2008).
24. Powell, H. W. King, M. Gray, R. J. MacLellan, D. A. Gonzalez-Izquierdo, B. Stockhausen, L. C. Hicks, G. Dover, N. P. Rusby, D. R. Carroll, D. C. Padda, H. Torres, R. Kar, S. Clarke, R. J. Musgrave, I. O. Najmudin, Z. Borghesi, M. Neely, D. and McKenna, P. New J. Phys. 17, 103033 (2015).
25. Higginson, A. Gray, R. J. King, M. Dance, R. J. Williamson, S. D. R. Butler, N. M. H. Wilson, R. Capdessus, R. Armstrong, C. Green, J. S. Hawkes, S. J. Martin, P. Wei, W. Q. Mirfayzi, S. R. Yuan, X. H. Kar, S. Borghesi, M. Clarke, R. J. Neely, D. and McKenna, P. Nature Commun. 9, 724 (2018).
26. Quinn, M. N. Yuan, X. H. Lin, X. X. Carroll, D. C. Tresca, O. Gray, R. J. Coury, M. Li, C. Li, Y. T. Brenner, C. M. Robinson, A. P. L. Neely, D. Zielbauer, B. Aurand, B. Fils, J. Kuehl, T. and McKenna, P. Plasma Phys. Control. Fusion 53, 025007 (2011).
27. Vyskočil, J. Klimo, O. and Weber, S. Plasma Phys. Control. Fusion 60, 054013 (2018).
28. Armstrong, C. D. Brenner, C. M. Scott, G. G. Rusby, D. R. Liao, G. Liu, H. Li, Y. Zhang, Z. Zhang, Y. Zhu, B. Zemaityte, E. Bradford, P. Woolsey, N. C. Oliveira, P. Spindloe, C. Wang, W. McKenna, P. and Neely, D. Plasma Phys. Control. Fusion 61, 034001 (2019).
29. Horný, V. and Klimo, O. Nukleonika 60, 233 (2015).
30. Compant La Fontaine, A. Courtois, C. Lefebvre, E. Bourgade, J. L. Landoas, O. Thorp, K. and Stoeckl, C. Phys. Plasmas 20, 123111 (2013).
31. Link, A. Freeman, R. R. Schumacher, D. W. and Van Woerkom, L. D. Phys. Plasmas 18, 053107 (2011).
32. Arber, T. D. Bennett, K. Brady, C. S. Lawrence-Douglas, A Ramsay, M. G. Sircombe, N. J. Gillies, P. Evans, R. G. Schmitz, H. Bell, A. R. and Ridgers, C. P. Plasma Phys. Control. Fusion 57, 113001 (2015).
33. McKenna, P. Carroll, D. C. Lundh, O. Nürnberg, F. Markey, K. Bandyopadhyay, S. Batani, D. Evans, R. G. Jafer, R. Kar, S. Neely, D. Pepler, D. Quinn, M. N. Redaelli, R. Roth, M. Wahlström, C. G. Yuan, X. H. and Zepf, M. Laser Part. Beams 26, 591 (2008).
34. Carroll, D. C. Quinn, M. N. Yuan, X. H. and McKenna, P. Central Laser Facility Annual Report 2007/2008, 19 (2008).
35. Wagner, F. Bedacht, S. Ortner, A. Roth, M. Tauschwitz, A. Zielbauer, B. and Bagnoud, V. Opt. Express 22, 29505 (2014).
36. Dromey, B. Kar, S. Zepf, M. and Foster, P. Rev. Sci. Instrum. 75, 645 (2004).
37. Krygier, A. G. Schumacher, D. W. and Freeman, R. R. Phys. Plasmas 21, 023112 (2014).
38. Robinson, A. P. L. Arefiev, A. V. and Neely, D. Phys. Rev. Lett. 111, 065002 (2013).
39. Mora, P. Phys. Rev. Lett. 90, 185002 (2003).
40. Myatt, J. Theobald, W. Delettrez, J. A. Stoeckl, C. Storm, M. Sangster, T. C. Maximov, A. V. and Short, R. W. Phys. Plasmas 14, 056301 (2007).
41. Rusby, D. R. Wilson, L. A. Gray, R. J. Dance, R. J. Butler, N. M. H. MacLellan, D. A. Scott, G. G. Bagnoud, V. Zielbauer, B. McKenna, P. and Neely, D. J. Plasma Phys. 81, 475810505 (2015).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Effect of rear surface fields on hot, refluxing and escaping electron populations via numerical simulations

  • D. R. Rusby (a1), C. D. Armstrong (a1), G. G. Scott (a1), M. King (a2), P. McKenna (a2) and D. Neely (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed