Skip to main content Accessibility help
×
Home

Cumulative material damage from train of ultrafast infrared laser pulses

  • A. Hanuka (a1) (a2), K. P. Wootton (a2), Z. Wu (a2), K. Soong (a3), I. V. Makasyuk (a2), R. J. England (a2) and L. Schächter (a1)...

Abstract

We developed a systematic experimental method to demonstrate that damage threshold fluence (DTF) for fused silica changes with the number of femtosecond laser (800 nm, $65\pm 5~\text{fs}$ , 10 Hz and 600 Hz) pulses. Based on the experimental data, we were able to develop a model which indicates that the change in DTF varies with the number of shots logarithmically up to a critical value. Above this value, DTF approaches an asymptotic value. Both DTF for a single shot and the asymptotic value as well as the critical value where this happens, are extrinsic parameters dependent on the configuration (repetition rate, pressure and geometry near or at the surface). These measurements indicate that the power of this dependence is an intrinsic parameter independent of the configuration.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cumulative material damage from train of ultrafast infrared laser pulses
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cumulative material damage from train of ultrafast infrared laser pulses
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cumulative material damage from train of ultrafast infrared laser pulses
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: A. Hanuka, Technion – Israel Institute of Technology, Haifa 32000, Israel. Email: adiha@tx.technion.ac.il

References

Hide All
1. Huang, Y. C. and Byer, R. L. Appl. Phys. Lett. 69, 2175 (1996).
2. England, R. J. Noble, R. J. Fahimian, B. Loo, B. Abel, E. Hanuka, A. and Schachter, L. AIP Conf. Proc. 1777, 060002 (2016).
3. Liu, X. Du, D. and Mourou, G. IEEE J. Quantum Electron. 33, 1706 (1997).
4. Stuart, B. Feit, M. Herman, S. Rubenchik, A. Shore, B. and Perry, M. Phys. Rev. B 53, 1749 (1996) 1.
5. Carr, C. W. Radousky, H. B. and Demos, S. G. Phys. Rev. Lett. 91, 127402 (2003).
6. Mero, M. Liu, J. Rudolph, W. Ristau, D. and Starke, K. Phys. Rev. B 71, 115109 (2005).
7. Chimier, B. Utéza, O. Sanner, N. Sentis, M. Itina, T. Lassonde, P. Légaré, F. Vidal, F. and Kieffer, J. C. Phys. Rev. B 84, 094104 (2011).
8. Bude, J. Miller, P. Baxamusa, S. Shen, N. Laurence, T. Steele, W. Suratwala, T. Wong, L. Carr, W. Cross, D. and Monticelli, M. Opt. Express 22, 5839 (2014).
9. Laurence, T.a Bude, J. D. Ly, S. Shen, N. and Feit, M. D. Opt. Express 20, 11561 (2012).
10. Jee, Y. Becker, F. M. and Walser, M. R. J. Opt. Soc. Am. B 5, 648 (1988).
11. Di Niso, F. Gaudiuso, C. Sibillano, T. Mezzapesa, F. P. Ancona, A. and Lugarà, P. M. Opt. Express 22, 12200 (2014).
12. Liang, F. Vallée, R. Gingras, D. and Chin, S. L. Opt. Mater. Express 1, 1244 (2011).
13. Raciukaitis, G. Brikas, M. Gecys, P. and Gedvilas, M. Proc. SPIE 7005, 70052L (2008).
14. Mannion, P. T. Magee, J. Coyne, E. OConnor, G. M. and Glynn, T. J. Appl. Surf. Sci. 233, 275 (2004).
15. Mouskeftaras, A. Guizard, S. Fedorov, N. and Klimentov, S. Appl. Phys. A 110, 709 (2013).
16. Lenzner, M. Krüger, J. Sartania, S. Cheng, Z. Spielmann, Ch. Mourou, G. Kautek, W. and Krausz, F. Phys. Rev. Lett. 80, 4076 (1998).
17. Ashkenasi, D. Lorenz, M. Stoian, R. and Rosenfeld, A. Appl. Surf. Sci. 150, 101 (1999).
18. Rosenfeld, A. Lorenz, M. Stoian, R. and Ashkenasi, D. Appl. Phys. A 69, 373 (1999).
19. Liang, F. Sun, Q. Gingras, D. Vallée, R. and Chin, S. L. Appl. Phys. Lett. 96, 101903 (2010).
20. Bonse, J. Wrobel, J. M. Krüger, J. and Kautek, W. Appl. Phys. A 72, 89 (2001).
21. Tien, A. C. Backus, S. Kapteyn, H. Murnane, M. and Mourou, G. Phys. Rev. Lett. 82, 3883 (1999).
22. Du, D. Liu, X. Korn, G. Squier, J. and Mourou, G. Appl. Phys. Lett. 64, 3071 (1994).
23. Zhang, K. Jiang, L. Li, X. Shi, X. Yu, D. Qu, L. and Lu, Y. J. Phys. D 47, 435105 (2014).
24. Roth, J. Tsitrone, E. Loarte, A. Loarer, T. Counsell, G. Neu, R. Philipps, V. Brezinsek, S. Lehnen, M. Coad, P. Grisolia, C. Schmid, K. Krieger, K. Kallenbach, A. Lipschultz, B. Doerner, R. Causey, R. Alimov, V. Shu, W. Ogorodnikova, O. Kirschner, A. Federici, G. and Kukushkin, A. J. Nucl. Mater. 390‐391, 1 (2009).
25. Peralta, E. A. and Byer, Rl in Proceedings of the 2011 Particle Accelerator Conference (2011), p. 280.
26. Allen, R. D. David, G. B. and Nomarski, G. Z. Wiss. Mikrosk. Mikrosk. Tech. 69, 193 (1969).
27. Nixon, W. C. Microelectron. Reliab. 4, 55 (1965).
28. Li, C. Zhao, Y. Cui, Y. Wang, Y. Peng, X. Shan, C. Zhu, M. Wang, J. and Shao, J. Opt. Laser Technol. 106, 372 (2018).
29. Soong, K. Byer, R. L. Colby, E. R. England, R. J. and Peralta, E. A. AIP Conf. Proc. 1507, 511 (2012).
30. Nguyen, D. Emmert, L. Schwoebel, P. Patel, D. Menoni, C. Shinn, M. and Rudolph, W. Opt. Express 19, 5690 (2011).
31. Sun, Q. Jiang, H. B. Liu, Y. Zhou, Y. H. Yang, H. and Gong, Q. H. Chin. Phys. Lett. 23, 189 (2006).
32. von der Linde, D. and Schuler, H. J. Opt. Soc. Am. B 13, 216 (1996).
33. Soong, K. Byer, R. McGuinness, C. Peralta, E. A. and Colby, E. in Proceedings of the 2011 Particle Accelerator Conference (2011), p. 277.
34. Keldysh, L. V. J. Exptl. Theoret. Phys. 47, 1945 (1964).
35. Anisimov, S. I. Bityurin, N. M. and Luk’yanchuk, B. S. in Photo-Excited Processes, Diagnostics and Applications: Fundamentals and Advanced Topics, Peled, A.  (ed.) (Springer, 2003), p. 121.
36. Emmert, L. A. Mero, M. and Rudolph, W. J. Appl. Phys. 108, 043523 (2010).
37. Rudolph, W. Emmert, L. Sun, Z. Patel, D. and Menoni, C. Proc. SPIE 8885, 888516 (2013).
38. Negres, R. A. Feit, M. D. and Demos, S. G. Opt. Express 18, 74 (2010).
39. Sun, Z. Lenzner, M. and Rudolph, W. J. Appl. Phys. 117, 073102 (2015).
40. Hanuka, A. Schächter, L. Wootton, K. P. Wu, Z. Soong, K. Makasyuk, I. V. and England, R. J. in Proceedings of IPAC2016 (2016), p. 4066.
41. Emmert, L. A. Mero, M. Nguyen, D. N. Rudolph, W. Patel, D. Krous, E. and Menoni, C. S. Proc. SPIE 7842, 784211 (2010).
42. Takigawa, Y. Kurosawa, K. Sasaki, W. Yoshida, K. Fujiwara, E. and Kato, Y. J. Non-Cryst. Solids 116, 293 (1990) 2.
43. Hanuka, A. and Schächter, L. Phys. Rev. Accel. 21, 54001 (2018).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed