Skip to main content Accessibility help
×
Home

Controllability of intense-laser ion acceleration

  • Shigeo Kawata (a1) (a2) (a3), Toshihiro Nagashima (a1), Masahiro Takano (a1), Takeshi Izumiyama (a1), Daiki Kamiyama (a1), Daisuke Barada (a1) (a2), Qing Kong (a4), Yan Jun Gu (a4), Ping Xiao Wang (a4), Yan Yun Ma (a2) (a5), Wei Ming Wang (a6), Wu Zhang (a3), Jiang Xie (a3), Huiran Zhang (a3) and Dongbo Dai (a3)...

Abstract

An ion beam has the unique feature of being able to deposit its main energy inside a human body to kill cancer cells or inside material. However, conventional ion accelerators tend to be huge in size and cost. In this paper, a future intense-laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, and the ion particle energy control. In the study, each component is designed to control the ion beam quality by particle simulations. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical-density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser–target interaction.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Controllability of intense-laser ion acceleration
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Controllability of intense-laser ion acceleration
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Controllability of intense-laser ion acceleration
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .

Corresponding author

Correspondence to: Shigeo Kawata, Dept. of Advanced Interdisciplinary Sciences, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya 321-8585, Japan. Email: kwt@cc.utsunomiya-u.ac.jp

References

Hide All
1. Bulanov, S. V. and Khoroshkov, V. S. Plasma Phys. Rep. 28, 453 (2002).
2. Roth, M. Cowan, T. E. Key, M. H. Hatchett, S. P. Brown, C. Fountain, W. Johnson, J. Pennington, D. M. Snavely, R. A. Wilks, S. C. Yasuike, K. Ruhl, H. Pegoraro, F. Bulanov, S. V. Campbell, E. M. Perry, M. D. and Powell, H. Phys. Rev. Lett. 86, 436 (2001).
3. Kaluza, M. Schreiber, J. Santala, M. I. K. Tsakiris, G. D. Eidmann, K. Meyer-ter-Vehn, J. and Witte, K. J. Phys Rev. Lett. 93, 045003 (2004).
4. Sentoku, Y. Liseikina, T. V. Esirkepov, T. Zh. Califano, F. Naumova, N. M. Ueshima, Y. Vshivkov, V. A. Kato, Y. Mima, K. Nishihara, K. Pegoraro, F. and Bulanov, S. V. Phys. Rev. E 62, 7271 (2000).
5. Ter-Avetisyan, S. Schnürer, M. Nickles, P. V. Kalashnikov, M. Risse, E. Sokollik, T. Sandner, W. Andreev, A. and Tikhonchuk, V. Phys. Rev. Lett. 96, 145006 (2006).
6. Andreev, A. A. Platonov, K. Yu. Okada, T. and Toraya, S. Phys. Plasmas 10, 220 (2003).
7. Andreev, A. A. Sonobe, R. Kawata, S. Miyazaki, S. Sakai, K. Miyauchi, K. Kikuchi, T. Platonov, K. and Nemoto, K. Plasma Phys. Control. Fusion 48, 1605 (2006).
8. Andreev, A. A. and Limpouch, J. J. Plasma Phys. 62, 179 (1999).
9. Andreev, A. A. Okada, T. Platonov, K. Yu. and Toroya, S. Laser and Particle Beams 22, 431 (2004).
10. Miyazaki, S. Kawata, S. Sonobe, R. and Kikuchi, T. Phys. Rev. E 71, 056403 (2005).
11. Nakamura, M. Kawata, S. Sonobe, R. Miyazaki, S. Kong, Q. and Kikuchi, T. J. Appl. Phys. 101, 113305 (2007).
12. Bulanov, S. V. Esirkepov, T. Zh. Califano, F. Kato, Y. Lisekina, T. V. Mima, K. Naumova, N. M. Nishihara, K. Pegorano, F. Ruhl, H. Sentoku, Y. and Ueshima, Y. JETP Lett. 71, 407 (2000).
13. Yu, T. P. Ma, Y. Y. Chen, M. Shao, F. Q. Yu, M. Y. Gu, Y. Q. and Yin, Y. Phys. Plasmas 16, 033112 (2009).
14. Nakamura, T. and Kawata, S. Phys. Rev. E 67, 026403 (2003).
15. Sonobe, R. Kawata, S. Miyazaki, S. Nakamura, M. and Kikuchi, T. Phys. Plasmas 12, 7 (2005) 073104.
16. Nakamura, T. Bulanov, S. V. Esirkepov, T. Z. and Kando, M. Phys. Rev. Lett. 105, 135002 (2010).
17. Hatchett, S. P. Brown, C. G. Cowan, T. E. Henry, E. A. Johnson, J. S. Key, M. H. Koch, J. A. Langdon, A. B. Lasinski, B. F. Lee, R. W. Mackinnon, A. J. Pennington, D. M. Perry, M. D. Phillips, T. W. Roth, M. Sangster, T. C. Singh, M. S. Snavely, R. A. Stoyer, M. A. Wilks, S. C. and yasuike, K. Phys. Plasmas 7, 2076 (2000).
18. Borghesi, M. Mackinnon, A. J. Campbell, D. H. Hicks, D. G. Kar, S. Patel, P. K. Price, D. Romagnani, L. Schiavi, A. and Willi, O. Phys. Rev. Lett. 92, 055003 (2004).
19. Lindau, F. Lundh, O. Persson, A. McKenna, P. Osvay, K. Batani, D. and Wahlström, C. G. Phys. Rev. Lett. 95, 175002 (2005).
20. Esirkepov, T. Zh. Bulanov, S. V. Nishihara, K. Tajima, T. Pegoraro, F. Khoroshkov, V. S. Mima, K. Daido, H. Kato, Y. Kitagawa, Y. Nagai, K. and Sakabe, S. Phys. Rev. Lett. 89, 175003 (2002).
21. Esirkepov, T. Zh. Borghesi, M. Bulanov, S. V. Mourou, G. and Tajima, T. Phy. Rev. Lett. 92, 175003 (2004).
22. Robinson, A. Bell, A. R. and Kingham, R. J. Phys. Rev. Lett. 96, 035005 (2006).
23. Wang, W. M. Sheng, Z. M. and Zhang, J. Phys. Plasmas 15, 030702 (2008).
24. Nodera, Y. Kawata, S. Onuma, N. Limpouch, J. Klimo, O. and Kikuchi, T. Phys. Rev. E 78, 046401 (2008).
25. Margarone, D. Klimo, O. Kim, I. J. Prokůpek, J. Limpouch, J. Jeong, T. M. Mocek, T. Pšikal, J. Kim, H. T. Proška, J. Nam, K. H. Štolcová, L. Choi, I. W. Lee, S. K. Sung, J. H. Yu, T. J. and Korn, G. Phys. Rev. Lett. 109, 234801 (2012).
26. Giap, H. and Chuang, E. Y. Trans. Cancer Res. 1, 125 (2012) and review articles in this Editorial special volume.
27. Langdon, A. B. and Lasinski, B. F. Methods Comput. Phys. 16, 327 (1976).
28. Lund, S. Cohen, R. and Ni, P. Phys. Rev. ST-AB 16, 044202 (2012).
29. Kawata, S. et al. , (to be published).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed