Skip to main content Accessibility help
×
Home

Analytical modelling of the expansion of a solid obstacle interacting with a radiative shock

  • Th. Michel (a1), E. Falize (a2) (a3), B. Albertazzi (a1), G. Rigon (a1), Y. Sakawa (a4), T. Sano (a4), H. Shimogawara (a4), R. Kumar (a4), T. Morita (a5), C. Michaut (a6), A. Casner (a7), P. Barroso (a8), P. Mabey (a1), Y. Kuramitsu (a9), S. Laffite (a2), L. Van Box Som (a2) (a3) (a10), G. Gregori (a11), R. Kodama (a9), N. Ozaki (a9), P. Tzeferacos (a12), D. Lamb (a12) and M. Koenig (a1) (a9)...

Abstract

In this paper, we present a model characterizing the interaction of a radiative shock (RS) with a solid material, as described in a recent paper (Koenig et al., Phys. Plasmas, 24, 082707 (2017)), the new model is then related to recent experiments performed on the GEKKO XII laser facility. The RS generated in a xenon gas cell propagates towards a solid obstacle that is ablated by radiation coming from the shock front and the radiative precursor, mimicking processes occurring in astrophysical phenomena. The model presented here calculates the dynamics of the obstacle expansion, which depends on several parameters, notably the geometry and the temperature of the shock. All parameters required for the model have been obtained from experiments. Good agreement between experimental data and the model is found when spherical geometry is taken into account. As a consequence, this model is a useful and easy tool to infer parameters from experimental data (such as the shock temperature), and also to design future experiments.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Analytical modelling of the expansion of a solid obstacle interacting with a radiative shock
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Analytical modelling of the expansion of a solid obstacle interacting with a radiative shock
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Analytical modelling of the expansion of a solid obstacle interacting with a radiative shock
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: Th. Michel, LULI, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France. Email: thibault.michel@polytechnique.edu

References

Hide All
1. Busschaert, C. Falize, E. Michaut, C. Bonnet-Bidaud, J. M. and Mouchet, M. Astron. Astrophys. 579, A25 (2015).
2. Orlando, S. Bonito, R. Argiroffi, C. Reale, F. Peres, G. Miceli, M. Matsakos, T. Stehle, C. Ibgui, L. de Sa, L. Chieze, J. P. and Lanz, T. Astron. Astrophys. 559, A127 (2013).
3. Spitzer, L. Astrophys. J. 120, 1 (1954).
4. Frieman, E. A. Astrophys. J. 120, 18 (1954).
5. Williams, R. J. R. Ward-Thompson, D. and Whitworth, A. P. Mon. Not. R. Astron. Soc. 327, 788 (2001).
6. Mizuta, A. Kane, J. O. Pound, M. W. Remington, B. A. Ryutov, D. D. and Takabe, H. Astrophys. J. 621, 803 (2005).
7. Michaut, C. Falize, E. Cavet, C. Bouquet, S. Koenig, M. Vinci, T. Reighard, A. and Drake, R. P. Astrophys. Space Sci. 322, 77 (2009).
8. Drake, R. Astrophys. Space Sci. 298, 49 (2005).
9. Bouquet, S. Teyssier, R. and Chize, J. P. Astrophys. J. Suppl. Ser. 127, 245 (2000).
10. Vinci, T. Koenig, M. Benuzzi-Mounaix, A. Michaut, C. Boireau, L. Leygnac, S. Bouquet, S. Peyrusse, O. and Batani, D. Phys. Plasmas 13, 010702 (2006).
11. Bouquet, S. Sthl, C. Koenig, M. Chize, J.-P. Benuzzi-Mounaix, A. Batani, D. Leygnac, S. Fleury, X. Merdji, H. Michaut, C. Thais, F. Grandjouan, N. Hall, T. Henry, E. Malka, V. and Lafon, J.-P. J. Phys. Rev. Lett. 92, 225001 (2004).
12. Drake, R. Doss, F. McClarren, R. Adams, M. Amato, N. Bingham, D. Chou, C. DiStefano, C. Fidkowski, K. Fryxell, B. Gombosi, T. I. Grosskopf, M. J. Holloway, J. P. van der Holst, B. Huntington, C. M. Karni, S. Krauland, C. M. Kuranz, C. C. Larsen, E. van Leer, B. Mallick, B. Marion, D. Martin, W. Morel, J. E. Myra, E. S. Nair, V. Powell, K. G. Rauchwerger, L. Roe, P. Rutter, E. Sokolov, I. V. Stout, Q. Torralva, B. R. Toth, G. Thornton, K. and Visco, A. J. High Energy Density Phys. 7, 130 (2011).
13. Reighard, A. B. Drake, R. P. Dannenberg, K. K. Kremer, D. J. Grosskopf, M. Harding, E. C. Leibrandt, D. R. Glendinning, S. G. Perry, T. S. Remington, B. A. Greenough, J. Knauer, J. Boehly, T. Bouquet, S. Boireau, L. Koenig, M. and Vinci, T. Phys. Plasmas 13, 082901 (2006).
14. Doss, F. W. Robey, H. F. Drake, R. P. and Kuranz, C. C. Phys. Plasmas 16, 112705 (2009).
15. Koenig, M. Michel, T. Yurchak, R. Michaut, C. Albertazzi, B. Laffite, S. Falize, E. Van Box Som, L. Sakawa, Y. Sano, T. Hara, Y. Morita, T. Kuramitsu, Y. Barroso, P. Pelka, A. Gregori, G. Kodama, R. Ozaki, N. Lamb, D. and Tzeferacos, P. Phys. Plasmas 24, 082707 (2017).
16. Collins, G. W. Celliers, P. M. Da Silva, L. B. Cauble, R. Gold, D. M. Foord, M. E. Holmes, N. C. Hammel, B. A. Wallace, R. J. and Ng, A. Phys. Rev. Lett. 87, 165504 (2001).
17. Drake, R. P. Phys. Plasmas 14, 043301 (2007).
18. Ramis, R. Schmalz, R. and Meyer-Ter-Vehn, J. Comput. Phys. Commun. 48, 475 (1988).
19.F. C. for Computational Science, FLASH User Guide (University of Chicago, 2015).
20. Koenig, M. Vinci, T. Benuzzi-Mounaix, A. Ozaki, N. Ravasio, A. le Glohaec, M. R. Boireau, L. Michaut, C. Bouquet, S. Atzeni, S. Schiavi, A. Peyrusse, O. and Batani, D. Phys. Plasmas 13, 056504 (2006).
21.SESAME: The LANL Equation of State Database, Report No. LA-UR-92- 3407 (University of Chicago, 1992).
22. Falize, É. Michaut, C. and Bouquet, S. Astrophys. J. 730, 96 (2011).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Analytical modelling of the expansion of a solid obstacle interacting with a radiative shock

  • Th. Michel (a1), E. Falize (a2) (a3), B. Albertazzi (a1), G. Rigon (a1), Y. Sakawa (a4), T. Sano (a4), H. Shimogawara (a4), R. Kumar (a4), T. Morita (a5), C. Michaut (a6), A. Casner (a7), P. Barroso (a8), P. Mabey (a1), Y. Kuramitsu (a9), S. Laffite (a2), L. Van Box Som (a2) (a3) (a10), G. Gregori (a11), R. Kodama (a9), N. Ozaki (a9), P. Tzeferacos (a12), D. Lamb (a12) and M. Koenig (a1) (a9)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed