1. Introduction
Let $\Sigma$ be a connected closed oriented surface of genus $g\geq 2$ and let $\Gamma =\pi _1(\Sigma )$ be its fundamental group. For a real reductive Lie group $G$ , we denote by $\Xi (\Gamma,G)\;:\!=\;{\textrm{Hom}}_{red}(\Gamma,G)/G$ the character variety, namely the space of conjugacy classes of completely reducible representations $\rho \colon \Gamma \to G$ . The third named author used Weyl chamber valued length functions to construct the Weyl chamber length compactification of the character variety [Reference Parreau25], a compactification that generalizes Thurston’s compactification of the Teichmüller space $\mathcal{T}=\mathcal{T}(\Sigma )$ , for which $G=\textrm{PSL}(2,{\mathbb{R}})$ . The boundary $\partial ^{\textrm{WL}}\Xi (\Gamma, G)$ of the character variety in the Weyl chamber length compactification is a compact subset of the set ${\mathbb{P}}({{\overline{\mathfrak a}^+}}^\Gamma )$ of homothety classes of nonzero functions $\overrightarrow{L}\colon \Gamma \to{{\overline{\mathfrak a}^+}}$ , where ${\overline{\mathfrak a}^+}$ is a fixed closed Weyl chamber of $G$ . Boundary points may be interpreted as projectivized ${\overline{\mathfrak a}^+}$ -length functions of actions on $\mathbb{R}$ -buildings [Reference Parreau25].
In the case of $G=\textrm{PSL}(2,{\mathbb{R}})$ , we know much more: Thurston proved that the boundary of this compactification of Teichmüller space is the projectivization ${\mathbb{P}} ({\mathcal{ML}})$ of the space $\mathcal{ML}$ of measured geodesic laminations on $\Sigma$ , realized as the cone ${\mathcal{ML}}\subset{\mathbb{R}}_+^\Gamma$ of functions $\Gamma \to{\mathbb{R}}_+$ that are intersection functions of measured geodesic laminations (or equivalently, of measured foliations) on $\Sigma$ [Reference Fathi, Laudenbach and Poénaru10, Reference Bonahon2]. This allowed him to prove that this boundary is a sphere of dimension $6g-7$ and the compactification is a closed ball [Reference Fathi, Laudenbach and Poénaru10]. Boundary points may also be interpreted as projectivized length functions of actions on real trees [Reference Bestvina1, Reference Paulin27, Reference Morgan and Shalen17].
If $G$ is of Hermitian type, that is, if the associated symmetric space admits a $G$ -invariant complex structure, the character variety contains a generalization of the Teichmüller space, the space of maximal representations, which we denote by $\Xi _{\text{Max}}(\Gamma,G)$ . We refer the reader to [Reference Burger, Iozzi, Labourie and Wienhard3, Reference Burger, Iozzi and Wienhard6] for the theory of maximal representations. Maximal representations share many features with the subset of the character variety consisting of Hitchin representations, which are defined for $G$ real split, and whose character variety we denote by $\Xi _{\text{Hit}}(\Gamma, G)$ . In [Reference Burger, Iozzi, Parreau and Pozzetti4, Reference Burger, Iozzi, Parreau and Pozzetti5] we used geodesic currents to study the Weyl chamber length compactification $\mathcal{X}^{\textrm{WL}}(\Gamma, G)$ of $\mathcal{X}(\Gamma, G)$ , where $\mathcal{X}(\Gamma, G)$ denotes either the Hitchin or the maximal character variety. We showed that, as soon as the group $G$ has higher rank, the mapping class group admits a non-empty open domain of discontinuity for its action on the boundary $\partial ^{\textrm{WL}}\mathcal{X}(\Gamma,G)$ , the so-called positive systole subset; moreover, for a dense subset of boundary points, the associated length function can be computed as intersection with a weighted multicurve. Natural questions arise: to determine the topology of $\mathcal{X}^{\textrm{WL}}(\Gamma,G)$ ; to interpret boundary points in terms of geometric structures on the surface, in particular in the positive systole subset; and to relate such geometric structures with the associated actions on $\mathbb{R}$ -buildings, for example, by finding a nice invariant subset following the third named author’s work in the case of $G=\textrm{PSL}(3,{\mathbb{R}})$ [Reference Parreau26].
In this text, we address all the questions introduced above in the case of $G=\textrm{PSL}(2,{\mathbb{R}})^n$ for $n\geq 2$ . The product structure of $G$ lets us identify the space $\Xi _{\text{Max}}(\Gamma,G)$ with the product $\mathcal{T}^n$ of $n$ copies of the Teichmüller space $\mathcal{T}=\Xi _{\text{Max}}(\Gamma,\textrm{PSL}(2,{\mathbb{R}}))$ . A model Weyl chamber for $G$ is ${{\overline{\mathfrak a}^+}}={\mathbb{R}}_+^n$ , hence boundary points are homothety classes of nonzero functions $\overrightarrow{L}\colon \Gamma \to{\mathbb{R}}_+^n$ . Such functions can be identified with $n$ -tuples $(L_i)_{i=1,\ldots,n}$ of functions $L_i\colon \Gamma \to{\mathbb{R}}_+$ .
We identify the boundary of $\mathcal{T}^n$ in its vectorial length compactification with the projectivization of $({\mathcal{ML}})^n$ ; in particular, we show that, being a join of $n$ spheres, it is topologically a sphere of dimension $n(6g-6)-1$ . This also allows us to give a precise description of the open domain of discontinuity for the mapping class group alluded to before; for this we denote by $({\mathcal{ML}})^n_{\gt 0}$ the set consisting of $n$ -tuples of measured laminations with positive joint systole, namely $n$ -tuples for which the function $\sum _{i=1}^n L_i(\gamma )$ has a positive lower bound on $\Gamma$ .
Theorem 1.1. The boundary $\partial ^{\textrm{WL}}\Xi _{\text{Max}}(\Gamma,\textrm{PSL}(2,{\mathbb{R}})^n)$ is ${\mathbb{P}}(({\mathcal{ML}})^n)$ , and $\textrm{MCG}(\Sigma )$ acts properly discontinuously on ${\mathbb{P}}(({\mathcal{ML}})^n_{\gt 0})$ .
We refer the reader to Section 4, and in particular to Corollary 4.4 for applications of this result to the study of compactifications induced by length functions on $\Gamma$ associated to various $\textrm{PSL}(2,{\mathbb{R}})^n$ -invariant distance functions on the product $(\mathcal H^2)^n$ of $n$ hyperbolic planes.
Inspired by the work of Duchin–Leiniger–Rafi [Reference Duchin, Leininger and Rafi9] and of Morzadec [Reference Morzadec18], we give a geometric interpretation of boundary points in the case of $n=2$ . Duchin–Leiniger–Rafi introduced mixed structures to give a geometric compactification of the space of ${\textrm{Flat}}(\Sigma )$ of half translation structures on a compact surface $\Sigma$ up to isometry. For the purposes of this paper, we define an ${\mathbb{R}}^2$ -mixed structure Footnote 1 on $\Sigma$ as a triple ${M}=(\Sigma^{\prime},{K},\overrightarrow{\lambda })$ where $\Sigma^{\prime}$ is an open geodesic subsurface of $\Sigma$ , $K$ is a half-translation structure on $\Sigma^{\prime}$ , extendible at boundary components regarded as punctures, and $\overrightarrow{\lambda }=(\Lambda, \nu _1,\nu _2)$ is a $2$ -measured geodesic lamination, that is, a geodesic lamination $\Lambda$ disjoint from $\Sigma^{\prime}$ and endowed with a pair of transverse measures $(\nu _1,\nu _2)$ , with $\textrm{supp}(\nu _1)\cup \textrm{supp}(\nu _2)=\Lambda$ . Note that the subsurface $\Sigma^{\prime}$ or the lamination $\Lambda$ may be empty, so the space $\overrightarrow{\textrm{Mix}}(\Sigma )$ of mixed structures on $\Sigma$ contains both the space $\overrightarrow{\textrm{Flat}}(\Sigma )$ of half-translation structures (up to isotopy) and the space of $2$ -measured geodesic laminations. The half-translation structure is equipped with a natural pair $(\mathcal{F}_1,\mathcal{F}_2)$ of transverse vertical/horizontal measured foliations. As a result, a mixed structure $M$ defines a natural pair $(\lambda _{{M},1},\lambda _{{M},2})$ of associated “vertical/horizontal” measured geodesic laminations on $\Sigma$ . Taking intersection functions, we obtain a map
extending the natural map $\overrightarrow{\textrm{Flat}}(\Sigma ) \to{\mathcal{ML}}\times{\mathcal{ML}}$ . We show in Proposition 5.8 that $I$ is a bijection, under which $\overrightarrow{\textrm{Flat}}(\Sigma )$ corresponds to ${(\mathcal{ML})}^2_{\gt 0}$ . Together with Theorem 1.1 this implies the following:
Theorem 1.2. Let $\overrightarrow{L}\colon \Gamma \to{\mathbb{R}}_+^2$ represent a point in the Weyl chamber length boundary of $\Xi _{\text{Max}}(\Gamma,\textrm{PSL}(2,{\mathbb{R}})^2)$ . Then
-
(1) $\overrightarrow{L}$ is the ${\mathbb{R}}^2$ -length function of a unique ${\mathbb{R}}^2$ -mixed structure ${M}=(\Sigma^{\prime},{K},\overrightarrow{\lambda })$ on $\Sigma$ .
-
(2) Every non-empty ${\mathbb{R}}^2$ -mixed structure on $\Sigma$ arises in this way.
We now turn to the question of relating the geometric structures appearing in the boundary of $\Xi _{\text{Max}}(\Gamma,G)$ to the associated actions on $\mathbb{R}$ -buildings and finding nice invariant subsets. In the case of $G=\textrm{PSL}(2,{\mathbb{R}})^n$ , the $\mathbb{R}$ -buildings appearing in the boundary of $\Xi _{\text{Max}}(\Gamma,G)$ are products of $n$ $\mathbb{R}$ -trees, and hence boundary points are homothety classes of ${\overline{\mathfrak a}^+}$ -length functions of actions of $\Gamma$ on a product of $n$ $\mathbb{R}$ -trees.
Notice that in his thesis [Reference Morzadec18] Morzadec used tree-graded spaces to obtain a geometric compactification of the space of flat structures and relate them with the mixed structures of [Reference Duchin, Leininger and Rafi9]. Also, in the case of $G=\textrm{PSL}(3,{\mathbb{R}})$ and $\Gamma$ a punctured surface group, the third named author associates in [Reference Parreau26] to large families of boundary points of $\Xi _{\text{Hit}}^{\textrm{WL}}(\Gamma,\textrm{PSL}(3,{\mathbb{R}}))$ explicit finite ${\overline{\mathfrak a}^+}$ -simplicial complexes whose universal cover, a tree-graded space with flat surface pieces, embeds equivariantly in the building preserving the natural ${\overline{\mathfrak a}^+}$ -metric.
Our last result takes these perspectives in the study of the compactification of the space of $\textrm{PSL}(2,{\mathbb{R}})\times \textrm{PSL}(2,{\mathbb{R}})$ -maximal representations. To be more precise, a tree-graded ${\mathbb{R}}^2$ -space $(X, d_1,d_2)$ is for us a space $X$ endowed with a pair $(d_1,d_2)$ of pseudometrics such that $d\;:\!=\;d_1+d_2$ is a metric, the $\ell ^1$ -metric, with respect to which $X$ is tree-graded in the sense of [Reference Druţu and Sapir8]; we furthermore require that $X$ admits an action of $\Gamma$ preserving each pseudometric. The ${\mathbb{R}}^2$ -length in $X$ of $\gamma \in \Gamma$ is then the pair
of translation lengths
of $\gamma$ for the pseudometric $d_i$ .
We associate to each mixed structure $M$ an ${\mathbb{R}}^2$ -tree-graded space $(X_M, d_1,d_2)$ dual to $M$ , whose pieces are either flat surfaces or $\mathbb{R}$ -trees:
Theorem 1.3. Let ${M}=(\Sigma^{\prime},{K},\overrightarrow{\lambda })$ be an ${\mathbb{R}}^2$ -mixed structure on $\Sigma$ and $\overrightarrow{L}\colon \Gamma \to{\mathbb{R}}_+^2$ the associated ${\mathbb{R}}^2$ -length function. Then there is a tree-graded ${\mathbb{R}}^2$ -space $X_M$ with length spectrum $\overrightarrow{L}\colon \Gamma \to{\mathbb{R}}_+^2$ , and satisfying the following universal property: for any two actions of $\Gamma$ on $\mathbb{R}$ -trees $T_1,T_2$ with length function $(L_{T_1},L_{T_2})=\overrightarrow{L}$ , there is an equivariant embedding
preserving each pseudometric $d_i$ (and isometric for the $\ell ^1$ -metric).
In particular, for any point in the boundary $\partial ^{\textrm{WL}}\Xi _{\text{Max}}(\Gamma,\textrm{PSL}(2,{\mathbb{R}})^2)$ , with associated mixed structure $M$ , the corresponding action on a $\mathbb{R}$ -building (here a product of two trees) preserves an ${\overline{\mathfrak a}^+}$ -isometrically equivariantly embedded copy of $X_{M}$ .
We construct the space $X_M$ by gluing the dual trees corresponding to the lamination components, endowed with the pair of pseudometrics induced by the pair of transverse measures, together with the completions of the flat components, endowed with the natural pair of horizontal and vertical pseudometrics (see Section 6 for more details). We show that the $\ell ^1$ -metric on $X_{M}$ corresponds to the path metric induced by the $\ell ^1$ -norm on the flat components (Lemma 5.3).
A more analytic and independent approach to compactifications of the space of maximal representations in rank 2 Hermitian Lie groups has been independently pursued by Ouyang [Reference Ouyang19], Ouyang–Tamburelli [Reference Ouyang and Tamburelli21, Reference Ouyang and Tamburelli22], and Martone–Ouyang–Tamburelli [Reference Martone, Ouyang and Tamburelli16]. In their work, they consider the length spectrum of the negatively curved metric induced on the unique invariant minimal surface associated to a maximal representation. They obtain in this way a compactification that they denote $\overline{\textrm{Ind}(S)}$ . In the case of $G=\textrm{PSL}(2,{\mathbb{R}})\times \textrm{PSL}(2,{\mathbb{R}})$ , Martone–Ouyang–Tamburelli [Reference Martone, Ouyang and Tamburelli16] also consider a refined compactification dominating $\overline{\textrm{Ind}(S)}$ , which they prove is a ball of dimension $12g-12$ . Their notion of $(\overline{A_1^+\times A_1^+},2)$ -mixed structure introduced in this work is equivalent to our of ${\mathbb{R}}^2$ -mixed structure defined above. Moreover, they prove that also the boundary of $\Xi _{\text{Max}}(\Gamma,\textrm{PSL}(2,{\mathbb{R}})^2)$ in their refined compactification can be identified with such structures.
Structure of the paper: The first two sections largely consist of preliminaries: we recall in Section 2 the construction of the Weyl chamber length compactification for $G=\textrm{PSL}(2,{\mathbb{R}})^n$ , and we discuss in Section 3 the relation between measured foliations, laminations, trees, and geodesic currents. The only new material in Section 3 is in Section 3.5 where we introduce the key notion of the ${\mathbb{R}}^n$ -tree dual to an $n$ -measured geodesic lamination. With these at hand, we prove Theorem 1.1 in Section 4. We introduce and study mixed structures in Section 5, where we also prove Theorem 1.2. We construct in Section 6 the ${\mathbb{R}}^2$ -tree-graded space $(X_{M}, d_1,d_2)$ dual to a mixed structure $M$ . We prove in Section 7 that this tree-graded space embeds isometrically in any product of trees (Proposition 7.1), which concludes the proof of Theorem 1.3.
2. The Weyl chamber length compactification
2.1. Weyl chamber-valued and ${\mathbb{R}}^n$ -valued metrics
Given a finite reflection group $({\mathfrak{a}},W)$ and a fixed model closed Weyl chamber ${\overline{\mathfrak a}^+}$ , we define a ${\overline{\mathfrak a}^+}$ -valued pseudometric on a space $X$ as a function $\overrightarrow{d} \colon X \times X \to{{\overline{\mathfrak a}^+}}$ satisfying $\overrightarrow{d}(x,x)=0$ and
-
Triangular inequality: $\overrightarrow{d}(x,z)\leq \overrightarrow{d}(x,y)+\overrightarrow{d}(y,z)$ ;
-
$\text{opp}$ -symmetry: $\overrightarrow{d}(y,x)=\overrightarrow{d}(x,y)^{\text{opp}}$ ,
where $\text{opp}$ is the opposition involution on $\mathfrak{a}$ , and $\mathfrak{a}$ is endowed with the partial order with positive cone the Euclidean dual $({{\overline{\mathfrak a}^+}})^*$ of ${\overline{\mathfrak a}^+}$ . We will call $\overrightarrow{d}$ a ${\overline{\mathfrak a}^+}$ -valued metric if in addition it is separated, namely $\overrightarrow{d}(x,y)=0$ implies $x=y$ .
In this article, we are interested only in the reflection group associated to the semisimple Lie group $G=\textrm{PSL}(2,{\mathbb{R}})^n$ , which is ${\mathfrak{a}}={\mathbb{R}}^n$ with Weyl group $W=\{\pm{\textrm{id}}_{\mathbb{R}}\}^n$ . The model closed Weyl chamber is ${{\overline{\mathfrak a}^+}}={\mathbb{R}}_+^n$ . In this case, the involution opposition is trivial, $({{\overline{\mathfrak a}^+}})^*={{\overline{\mathfrak a}^+}}={\mathbb{R}}_+^n$ so a ${\overline{\mathfrak a}^+}$ -valued (pseudo)metric amounts simply to a $n$ -tuple
of usual $\mathbb{R}$ -valued (pseudo)metric $d_i$ . This gives rise to the equivalent notion of a ${\mathbb{R}}^n$ -(pseudo)metric:
Definition 2.1. An ${\mathbb{R}}^n$ -pseudometric space is a set $X$ together with an $n$ -tuple $\overrightarrow{d}=(d_i)_{i=1,\ldots,n}$ of pseudometrics. We say that $(X,\overrightarrow{d})$ is an ${\mathbb{R}}^n$ -metric space if $d\;:\!=\;\sum _{i=1}^n d_i$ is a metric.
Observe that even if $(X,\overrightarrow{d})$ is an ${\mathbb{R}}^n$ -metric space, it is possible that none of the pseudo-metrics $d_i$ is separated.
Example 2.2. Examples of ${\mathbb{R}}^n$ -metric spaces are products
of ordinary metric spaces, as well as subspaces thereof with the induced metric. Another example that will play an important role in our paper are the ${\mathbb{R}}^2$ -metric naturally induced on the universal cover of a half translation surface, see Section 5.1 for details. Another relevant example is given by simplicial trees with ${\mathbb{R}}^2$ -valued edge lengths. This is discussed, and generalized, in Section 3.5.
In our case of interest,Footnote 2 it is easy to prove that, for any $W$ -invariant norm $N\colon{\mathfrak{a}}={\mathbb{R}}^n\to{\mathbb{R}}_+$ , $N$ is not decreasing on each variable on ${{\overline{\mathfrak a}^+}}={\mathbb{R}}_+^n$ , that is, for the partial order introduced above. As a result, a ${\overline{\mathfrak a}^+}$ -valued (pseudo)metric $\overrightarrow{d}$ on $X$ induces an $\mathbb{R}$ -valued (pseudo)metric by setting
Note that $\overrightarrow{d}(x,y)=0$ if and only if $d_N(x,y)=0$ , in particular $\overrightarrow{d}$ is separated if and only if $d_N$ is separated.
Norms $N\colon{\mathbb{R}}^n\to{\mathbb{R}}$ of particular interest to us are the $\ell ^2$ and $\ell ^1$ norms, which we denote, respectively, by $\|\cdot \|_2$ and $\|\cdot \|_1$ . They give the associated Euclidean (pseudo)metric
and $\ell ^1$ -(pseudo)metric
on $X$ . We will also denote $d_{\|\cdot \|_2}$ by $\lVert \overrightarrow{d} \rVert _2$ and $d^1$ by $\| \overrightarrow{d} \|_1$ .
Remark 2.3. If $X=X_1\times \ldots \times X_n$ is a product, then $d_{\|\cdot \|_2}$ is the usual product metric, in particular $(X,d_{\|\cdot \|_2})$ is CAT(0) if and only if each of the $X_i$ are. However, in general, $(X,d_{\|\cdot \|_2})$ is not a geodesic metric space. For example, if $X$ is a simplicial tree with ${\mathbb{R}}^2$ -valued edge lengths, the induced metric space $(X,d_{\|\cdot \|_2})$ is geodesic if and only if the two distance functions $d_i$ are proportional.
2.2. The Weyl chamber valued length function on $\textrm{PSL}(2,{\mathbb{R}})^n$
The symmetric space associated to $\textrm{PSL}(2,{\mathbb{R}})^n$ is the product $X=(\mathcal H^2)^n$ of $n$ copies of the hyperbolic plane $\mathcal H^2$ . On $X$ the natural Weyl-chamber valued distance $\overrightarrow{d} \colon X \times X \to{\mathbb{R}}_+^n$ is simply the product distance
The Weyl chamber length (or ${\mathbb{R}}^n$ -length) of $g=(g_i)_{i=1,\ldots,n}\in \textrm{PSL}(2,{\mathbb{R}})^n$ can be defined as
where the infimum is considered with respect to the partial order on ${\mathbb{R}}^n$ with positive cone ${\mathbb{R}}_+^n$ . As the metric space $X$ is a product, it boils down to taking the list of the usual lengths in each factor:
Here ${L}(g)\;:\!=\;\inf _{x\in \mathcal H^2}d(x,gx)$ is the usual translation length of $g$ on the hyperbolic plane $\mathcal H^2$ . This ensures in particular that the infimum in (1.1) exists.
The length function of a representation $\rho \colon \Gamma \to \textrm{PSL}(2,{\mathbb{R}})$ is
Similarly, the Weyl chamber length function (or ${\mathbb{R}}^n$ -length function) of a representation $\rho \colon \Gamma \to \textrm{PSL}(2,{\mathbb{R}})^n$ is
Of course when $\rho =(\rho _i)_{i=1,\ldots,n}$ , it holds $\overrightarrow{L}_\rho =(L_{\rho _i})_{i=1,\ldots,n}$ .
2.3. The Weyl chamber length compactification
Here we define the Weyl chamber length compactification constructed in [Reference Parreau25], which has a simpler construction in our context. We endow the space $({\mathbb{R}}_+^n)^\Gamma$ of functions $\overrightarrow{L}\colon \Gamma \to{\mathbb{R}}_+^n$ with the topology of pointwise convergence, and the space ${\mathbb{P}}(({\mathbb{R}}_+^n)^\Gamma )$ of homothety classes of nonzero functions $\overrightarrow{L}$ with the quotient topology. The map
induces a continuous map
equivariant with respect to the mapping class group action. The injectivity of $\mathcal{T} \to{\mathbb{P}}{\mathbb{R}}_+^\Gamma$ implies that the map ${\mathbb{P}}\overrightarrow{\mathcal{L}}$ is injective as well. The Weyl chamber length compactification $\overline{\mathcal{T}^n}^{\textrm{WL}}$ of $\mathcal{T}^n$ is by definition the closure of its image (which is a compact set). We denote
its boundary.
2.4. Other length compactifications
Recall from Section 2.1 that any $W$ -invariant norm $N\colon{\mathbb{R}}^n\to{\mathbb{R}}$ induces a metric $d_N\;:\!=\;N(\overrightarrow{d})$ on $X=(\mathcal H^2)^n$ , and thus a corresponding length function, the $N$ -length function $L_{d_N}$ . We use this to construct the $N$ -length compactification $\overline{\mathcal{T}^n}^{N}$ of $\mathcal{T}^n$ , associated to $L_{d_N}$ .
It is easy to verify that, since $N$ is not decreasing on each variable on ${{\overline{\mathfrak a}^+}}={\mathbb{R}}_+^n$ , and $\mathcal{T}^n$ is a product, it holds $L_{d_N}(g)=N(\overrightarrow{L}(g))$ . The Weyl chamber length compactification then dominates naturally $\overline{\mathcal{T}^n}^{N}$ : the restriction of the natural map
induces a continuous $\textrm{Out}(\Gamma )$ -equivariant surjective map
restricting to identity on $\mathcal{T}^n$ .
3. Trees dual to measured geodesic laminations
We refer the reader to [Reference Kapovich14, Chapter 11] for preliminaries on measured laminations, measured foliations, and the identification between equivalence classes of measured foliations and measured geodesic laminations on hyperbolic surfaces. The material in Sections 3.2, 3.3, and 3.4 is classical, while the viewpoint in Section 3.5 is new and important for our paper.
3.1. Measured foliations
Let $\mathcal{F}$ be a transverse measured foliation on a topological surface $\Sigma$ with fundamental group $\Gamma$ . We denote by $i(\mathcal {F},c)$ the measure of a path $c\subset \Sigma$ with respect to $\mathcal{F}$ . The intersection of $\mathcal{F}$ with $\gamma \in \Gamma$ is defined as
where the infimum is taken over all closed loops $c$ transverse to $\Lambda$ and freely homotopic to $\gamma$ . We denote by
the corresponding intersection function.
This may be reformulated in terms of pseudometrics. We denote by $d_{\mathcal{F}}$ the pseudometric on the universal cover $\widetilde{\Sigma }$ of $\Sigma$ associated with the lift $\widetilde{\mathcal{F}}$ of $\mathcal{F}$ : it is defined by the formula
where the infimum is taken on paths $c$ joining $x$ to $y$ in $\widetilde{\Sigma }$ and transverse to $\widetilde{\mathcal{F}}$ . The length function $L_d\in ({\mathbb{R}}_+)^\Gamma$ of a pseudometric $d$ on a $\Gamma$ -space $X$ is defined as
By definition, the length function of $d_{\mathcal{F}}$ on $\widetilde{\Sigma }$ is the intersection function of $\mathcal{F}$ :
The dual tree of a measured foliation $\mathcal{F}$ is defined as the quotient metric space $T(\mathcal{F})\;:\!=\;\widetilde{\Sigma }/d_{\mathcal{F}}$ of $\widetilde{\Sigma }$ by the pseudometric $d_{\mathcal{F}}$ . The tree $T(\mathcal{F})$ inherits an action of $\Gamma$ by isometries, with associated length function
3.2. Measured geodesic laminations
Let $\lambda =(\Lambda,\nu )$ be a measured lamination on $\Sigma$ . As for measured foliations, we denote by $i(\lambda, c)$ the $\lambda$ -measure of a path $c\colon [0,1] \to \Sigma$ transverse to $\Lambda$ . The intersection of $\lambda$ with $\gamma \in \Gamma$ is defined as
where the infimum is taken over all closed loops $c$ transverse to $\Lambda$ and freely homotopic to $\gamma$ , and we denote by
the corresponding intersection function.
We denote by $d_\lambda$ the pseudometric on $\widetilde{\Sigma }$ associated with $\lambda$ : this is the pseudometric defined on $\widetilde{\Sigma }-\widetilde{\Lambda _0}$ , where $\widetilde{\Lambda _0}$ is the set of atomicFootnote 3 leafs of the lift $\tilde{\lambda }=(\widetilde{\Lambda },\nu )$ of $\lambda$ , by the formula
where the infimum is taken on paths $c$ joining $x$ to $y$ in $\widetilde{\Sigma }$ and transverse to $\widetilde{\Lambda }$ . By definition, the length function of $d_\lambda$ on $\widetilde{\Sigma }-\widetilde{\Lambda _0}$ is the intersection function of $\lambda$ :
We refer to [Reference Kapovich14] for the classical correspondence between measured foliations and measured geodesic laminations on hyperbolic surfaces.
3.3. Geodesic currents
We refer to [Reference Bonahon2] or [Reference Martelli15, Section 8] for the background material in the case of closed geodesic surfaces, and for instance to [Reference Burger, Iozzi, Parreau and Pozzetti4] for the generalization to finite type surfaces.
A geodesic current on a finite type hyperbolic surface $\Sigma =\mathcal H^2/\Gamma$ is a flip-invariant $\Gamma$ -invariant positive Radon measure on the space of unoriented, unparametrized geodesics of $\mathcal H^2$ , that may be identified with the space
of distinct pairs of points in the boundary at infinity $\partial \mathcal H^2$ of $\mathcal H^2$ . A basic example is the current $\delta _c$ associated to a closed geodesic $c$ in $\Sigma$ , which is defined as the sum of the Dirac masses on the lifts of $c$ to $\mathcal H^2$ . Recall that the Bonahon intersection $i(\mu,\nu )$ of two geodesic currents $\mu,\nu$ is defined as the $(\mu \times \nu )$ -measure of any Borel fundamental domain for the $\Gamma$ -action on the space $\mathcal{DG}(\mathcal H^2)\subset \mathcal{G}(\mathcal H^2)\times \mathcal{G}(\mathcal H^2)$ of pairs of transverse geodesics $(g,h)$ .
We refer for instance to [Reference Martelli15, Section 8.3.4] for the bijective correspondence $\lambda \mapsto \mu _ \lambda$ between measured geodesic laminations $\lambda =(\Lambda,\nu )$ of full support $\Lambda$ and geodesic currents $\mu$ on $\Sigma$ with $i(\mu,\mu )=0$ , equivalently currents $\mu$ such that no two geodesics in the support of $\mu$ intersect transversally. The geodesic current $\mu _\lambda$ has support $\Lambda$ , and, for each geodesic arc $c$ transverse to $\Lambda$ , the restriction of $\mu _\lambda$ to the set of geodesics $g$ of $\Lambda$ intersecting $c$ is the pullback of the $\lambda$ -measure on $c$ by the map $g \mapsto g\cap c$ . The notions of intersection then coincide as
for all closed geodesic $c$ in $\Sigma$ . Note that the union of two measured geodesic laminations with disjoint support corresponds to the sum of the associated currents. From now on, we will freely identify $\lambda$ with $\mu _\lambda$ whenever convenient.
Given a geodesic current $\mu$ on $\Sigma$ and a geodesic subsurface $\Sigma^{\prime}$ of $\Sigma$ , we denote by $\mu_{|{\Sigma^{\prime}}}$ the restriction of $\mu$ to the subsurface $\Sigma^{\prime}$ , namely the geodesic current
where $\chi _{\mathcal{G}(\Sigma^{\prime})}$ is the characteristic function of the set $\mathcal{G}(\Sigma^{\prime})$ of geodesics whose projection lies in $\Sigma^{\prime}$ . In general, a geodesic current of full support might restrict to the zero current on a proper subsurface (this is the case when $\mu$ is the Liouville current of a hyperbolic structure), but if, for every boundary component $c$ of $\Sigma^{\prime}$ , $i(\mu,\delta _c)=0$ , then for every $\gamma \in \pi _1(\Sigma^{\prime})$ , $i(\mu,\delta _\gamma )=i(\mu_{|\Sigma^{\prime}},\delta _\gamma )$ [Reference Burger, Iozzi, Parreau and Pozzetti5, Proposition 4.13].
3.4. Dual tree of a measured geodesic lamination
Let $\lambda =(\Lambda,\nu )$ be a measured geodesic lamination on an hyperbolic surface $\Sigma$ . We now recall the construction of the associated dual $\mathbb{R}$ -tree. We follow the construction of [Reference Kapovich14, Section 11.12].
We first get rid of the atoms blowing-up along atomic leafs: for each isolated leaf $c$ of $\Lambda$ , cut $\Sigma$ along $c$ and insert an annulus $B(c)=c\times [0,1]$ , foliated by the parallel circles $c\times{t}$ . We endow $\Sigma ^b$ with the locally CAT(0) metric $m^b$ equal to the original metric $m$ of $\Sigma$ outside the annuli $B(c)$ and to the flat metric on $B(c)$ . This gives a locally CAT(0) surface $(\Sigma ^b,m^b)$ homeomorphic to $\Sigma$ , with a geodesic lamination $\Lambda ^b$ . We call $(\Sigma ^b,\Lambda ^b)$ the blow-up of $(\Sigma,\Lambda )$ . The blow-up of the transverse measure $\nu$ on $\Lambda$ is the non-atomic transverse measure $\nu ^b$ on $\Lambda ^b$ , obtained from $\nu$ by giving to each foliated annulus $B(c)$ the transverse measure $\nu (c)dt$ on $[0,1]$ . The pseudometric $d_{\lambda ^b}$ associated to the measured lamination $\lambda ^b\;:\!=\;(\Lambda ^b,\nu ^b)$ is then a continuous and everywhere-defined path pseudometric on $\widetilde{\Sigma ^b}$ . The $\mathbb{R}$ -tree dual to $\lambda$ is defined as the quotient metric space $T(\lambda )\;:\!=\;\widetilde{\Sigma ^b}/d_\lambda ^b$ , whose metric will be denoted by $d_\lambda$ .
It is easy but crucial to see that the geodesics of $T(\lambda )$ are the projections of the $m^b$ -geodesics of $\widetilde{\Sigma ^b}$ . In the following lemma, and in the rest of the article, when we write geodesic we mean a path $t\mapsto c(t)$ that is additive for the distance $d$ , namely such that $d(c(t_1),c(t_3))=d(c(t_1),c(t_2))+d(c(t_2),c(t_3))$ for all $t_1\leq t_2\leq t_3$ . Observe that $c$ may then be constant on some subset of its domain of definition and needs not be parametrized at constant speed.
Proposition 3.1. Let $c\colon I\to \widetilde{\Sigma ^b}$ be a $m^b$ -geodesic. Then $c$ is a minimizing curve for $d_{\lambda ^b}$ , and the projection of $c$ on the tree $T(\lambda )$ is a geodesic.
Proof. Let $x,y$ be points of $\widetilde{\Sigma ^b}$ and $c\colon [0,1]\to \widetilde{\Sigma ^b}$ be the constant speed geodesic segment from $x$ to $y$ . As the leafs of $\widetilde{\Lambda }^b$ are geodesics, and CAT(0) spaces are uniquely geodesic, the path $c$ cannot cross twice the same leaf of $\widetilde{\Lambda }^b$ , hence $i(\lambda ^b,c)$ is minimal and $d_{\lambda ^b}(x,y)=i(\lambda ^b,c)$ . Denote by $p\colon \widetilde{\Sigma ^b}\to T(\lambda )$ the canonical projection. The projection $\overline{c}=p\circ c$ of $c$ in the dual tree $T(\lambda )$ does not backtrack, hence is a geodesic.
The tree $T(\lambda )$ inherits an action of $\Gamma$ by isometries, with associated length function
Note that when $\Sigma$ is closed the tree $T(\lambda )$ is then minimal for the action of $\Gamma$ , namely there is no invariant proper subtree. Indeed an invariant proper subtree will lift as a proper closed invariant convex subset in $\widetilde{\Sigma ^b}$ , and taking the closure in the CAT(0) compactification we will then obtain a proper closed invariant subset of the boundary at infinity $\partial _\infty \widetilde{\Sigma ^b} \simeq \partial \mathcal H^2$ , which is impossible.
Note that the tree $T(\lambda )$ is essentially determined by its length function ; more generally, we will use the length rigidity of actions on minimal trees with length functions in $\mathcal{ML}$ : It is easily seen that for $\lambda \neq 0$ the action of $\Gamma$ on $T(\lambda )$ has no global fixed point in $\partial _\infty T$ , where $\partial _\infty T$ denotes the boundary at infinity of $T$ . This in fact depends only on the length function, since having a fixed point at infinity is equivalent to the length function being of the form $\gamma \mapsto |h(\gamma )|$ , where $h:\Gamma \to{\mathbb{R}}$ is a morphism [Reference Culler and Morgan7, Corollary 2.3]. In particular, all minimal $\Gamma$ -trees with nonzero length function in $\mathcal{ML}$ have no fixed point at infinity, in particular are semisimple and not shifts in the sense of [Reference Culler and Morgan7]. It follows then from the length rigidity for minimal semisimple $\Gamma$ -trees [Reference Culler and Morgan7, Theorem 3.7] that if $T$ and $T'$ are any two minimal $\Gamma$ -trees with the same length function in $\mathcal{ML}$ , then there is a unique equivariant isometry $T\to T'$ .
3.5. The ${\mathbb{R}}^n$ -tree dual to a $n$ -measured geodesic lamination
Let $n\in{\mathbb{N}}$ .
Definition 3.2. A ${\mathbb{R}}^n$ -tree is a ${\mathbb{R}}^n$ -metric space $(X, \overrightarrow{d}=(d_i)_{i=1,\ldots,n})$ which is a $\mathbb{R}$ -tree for the associated $\ell ^1$ -metric $d^1(x,y)\;:\!=\;\sum _i d_i(x,y)$ .
Observe that, while we only assume that $d_i$ are pseudodistances, we require that their sum $d^1$ is a distance, namely it separates points.
Definition 3.3. A $n$ -measured lamination $\overrightarrow{\lambda }=(\Lambda,\overrightarrow{\nu })$ on a surface $\Sigma$ is a lamination $\Lambda$ on $\Sigma$ , endowed with a $n$ -tuple $\overrightarrow{\nu }=(\nu _1,\ldots, \nu _n)$ of transverse measures of full joint support, namely $\Lambda$ is the union of the supports $\Lambda _i$ of the measures $\nu _i$ for $i=1,\ldots,n$ .
It can equivalently be seen as a $n$ -tuple of parallel measured laminations $(\lambda _1,\ldots, \lambda _n)$ , that is, such that any two leafs of $\lambda _i$ and $\lambda _j$ are either disjoint or equal.
When $\Sigma$ is endowed with a locally CAT(0) metric, a $n$ -measured geodesic lamination $\overrightarrow{\lambda }=(\Lambda,\overrightarrow{\nu })$ is called geodesic when $\Lambda$ is geodesic.
When $\Sigma$ is a closed hyperbolic surface, seeing measured geodesic laminations as geodesic currents, a $n$ -tuple $(\lambda _1,\ldots, \lambda _n)$ of measured geodesic laminations is parallel if and only if
or equivalently that
Let $\overrightarrow{\lambda }=(\Lambda,\overrightarrow{\nu })$ be a $n$ -measured lamination on a closed hyperbolic surface $\Sigma$ . We now construct the associated dual ${\mathbb{R}}^n$ -tree, adapting the construction of Section 3.4.
We take the $\mathbb{R}$ -tree $T(\lambda )\;:\!=\;\widetilde{\Sigma ^b}/d_\lambda ^b$ dual to the measured lamination $\lambda =(\Lambda,\nu )$ where $\nu =\sum _i\nu _i$ .
Recall from Section 3.4 that $(\Sigma ^b,\Lambda ^b)$ is the blow-up of $(\Sigma,\Lambda )$ , which is a locally CAT(0) surface $(\Sigma ^b,m^b)$ homeomorphic to $\Sigma$ , with a geodesic lamination $\Lambda ^b$ , and that $\lambda ^b=(\Lambda ^b,\nu ^b)$ where $\nu ^b$ is the non-atomic transverse measure on $\Lambda ^b$ obtained by blowing up $\nu$ , and that $d_{\lambda ^b}$ the associated continuous path pseudometric on $\widetilde{\Sigma ^b}$ .
Taking the blow-ups $\nu ^b_i$ of the transverse measure $\nu _i$ , we obtained a $n$ -tuple $\overrightarrow{\nu }^b\;:\!=\;(\nu ^b_i)_i$ of non-atomic transverse measures on $\lambda ^b$ (not necessarily of full support), namely a $n$ -measured lamination $\overrightarrow{\lambda }^b=(\Lambda ^b,\overrightarrow{\nu }^b)$ on $\Sigma ^b$ , which we will call the blow-up of $\overrightarrow{\lambda }=(\Lambda,\overrightarrow{\nu })$ .
Each of the measured laminations $\lambda ^b_i=(\Lambda ^b,\nu ^b_i)$ then induces a continuous everywhere-defined path pseudometric $d_{\lambda ^b_i}$ on $\widetilde{\Sigma ^b}$ .
Definition 3.4. The ${\mathbb{R}}^n$ -tree $T(\overrightarrow{\lambda })$ dual to $\overrightarrow{\lambda }$ is defined as the $\mathbb{R}$ -tree $T(\lambda )\;:\!=\;\Sigma ^b/d_\lambda ^b$ dual to the measured lamination $\lambda$ , endowed with the ${\mathbb{R}}^n$ -pseudometric given by the $n$ -tuple
of quotient pseudometrics $d_{\lambda _i}$ induced by $d_{\lambda ^b_i}$ .
It inherits an action of $\Gamma$ preserving $\overrightarrow{d}_\lambda$ , that is preserving each pseudometric $d_{\lambda _i}$ .
Proposition 3.5. $(T(\lambda ),\overrightarrow{d}_\lambda )$ is an ${\mathbb{R}}^n$ -tree with associated $\ell ^1$ -metric $\lVert \overrightarrow{d}_\lambda \rVert _1=d_\lambda$ .
Proof. The crucial fact is that, by Proposition 3.1, the infima involved in the definition of the pseudometrics $d_{\lambda _i}$ are in fact all realized simultaneously for a same path $c$ in $\widetilde{\Sigma ^b}$ , the $m^b$ -geodesic. In particular, $c$ is a minimizing curve for $d_{\lambda ^b}$ and its projection on $T(\lambda )$ is a minimizing path for $\overrightarrow{d}_\lambda$ . This ensures that $d_{\lambda }=\sum _i d_{\lambda _i}$ on $T(\lambda )$ .
The separation of $\overrightarrow{d}_\lambda$ on $T(\lambda )$ follows: if $\overrightarrow{d}_\lambda (x,y)=0$ then $d_{\lambda }(x,y)=\sum _i d_{\lambda _i}(x,y)=0$ , hence $x=y$ .
Remark 3.6. Proposition 3.5 is special for the $\ell ^1$ -metric, and does not work for other distances, not even locally. For example, consider a minimal lamination $\lambda$ that supports two mutually singular measured laminations. Then the distance function $\lVert \overrightarrow{d}_\lambda \rVert _2$ is not geodesic, not even locally.
4. The boundary of $\Xi _{\text{Max}}(\Gamma,\textrm{PSL}(2,{\mathbb{R}})^n)$ is ${\mathbb{P}}(({\mathcal{ML}})^n)$
In this section, we prove Theorem 1.1, that identifies $\partial ^{\textrm{WL}}{\mathcal{T}^n}$ with ${\mathbb{P}}(({\mathcal{ML}})^n)$ , and deduce some consequences for other length spectra compactifications.
4.1. Proof of Theorem 1.1
Theorem 1.1 is classical when $n=1$ and follows from the work of Thurston. Thurston furthermore proved [Reference Fathi, Laudenbach and Poénaru10, Expose 8] that $\mathcal{ML}$ is homeomorphic to ${\mathbb{R}}^{6g-6}$ , that it is projectivization ${\mathbb{P}}{\mathcal{ML}}$ is homeomorphic to $\mathbb S^{6g-7}$ , and that the resulting compactification is homeomorphic to a closed ball [Reference Martelli15, 8.3.13]. Using the latter fact, we can prove the following lemma, which ensures that given $L$ in $\mathcal{ML}$ , one can choose a sequence in $\mathcal{T}$ converging to $[L]$ with a fixed scale sequence. It will be crucial in the proof of Theorem 1.1.
Lemma 4.1. Let $L\in{\mathcal{ML}}$ . Let $(\lambda _k)$ be any increasing diverging sequence of positive real numbers. Then there exists a sequence of maximal representations $\rho _{k}\colon \Gamma \to \textrm{PSL}(2,{\mathbb{R}})$ such that $\frac{1}{\lambda _k} L_{\rho _{k}}$ converges to $L$ in $({\mathbb{R}}_+)^\Gamma$ .
Proof. Given a finite generating set $S\subset \Gamma$ and an isometric action $\rho$ of $\Gamma$ on a metric space $X$ , the minimal displacement of $\rho$ with respect to the generating set $S$ is defined by
This defines a nonzero proper and continuous function $\lambda _S \colon \mathcal{T} \to{\mathbb{R}}_+$ (this is for example proven—in a much more general context—in [Reference Parreau24, Prop. 25]).
We may suppose that $L$ is nonzero (otherwise we can take a constant sequence $\rho _k$ ). Let $T$ be a $\mathbb{R}$ -tree with minimal $\Gamma$ -action, with length function $L$ . Let $D$ be the minimal displacement of $\Gamma$ on $T$ with respect to the generating set $S$ .
Fix a point $[\rho _0]$ in the Teichmüller space $\mathcal{T}$ . As the compactification $\overline{\mathcal{T}}$ of $\mathcal{T}$ is a closed ball, there exists a path $r(t)$ , $t\in [0,1]$ from $[\rho _0]$ to $[L]$ in $\overline{\mathcal{T}}$ such that $r(t)$ belongs to $\mathcal{T}$ for $t\in [0,1[$ . Let $\rho _t$ be a representation with $[\rho _t]=r(t)$ . Then, as the map
is continuous and diverges as $t$ goes to $1$ , there exists an increasing sequence $(t_k)_{k\geq K}$ in $[0,1[$ with limit $1$ such that $\lambda _S(r(t_k))=D\lambda _k$ . Since $[\rho _k]=r(t_k)$ converges to $[L]$ in $\overline{\mathcal{T}}$ , we have that $\frac{1}{\lambda _S(\rho _k)} L_{\rho _k}$ converges to $sL$ for some $s\in{\mathbb{R}}_+$ . Taking the asymptotic cone of this sequence (see for example [Reference Parreau25]), we also have that $sL$ is the length function of an action of $\Gamma$ on a real tree $T_\omega$ with minimal displacement $1$ with respect to $S$ .Footnote 4 Let $T'\subset T_\omega$ be the minimal invariant subtree. As $T'$ is a convex subset of $T_\omega$ , the minimal displacement of $\Gamma$ in $T'$ is the same as in $T_\omega$ . By length rigidity of actions on minimal trees with length function in $\mathcal{ML}$ , the trees $T$ and $\frac{1}{s}T'$ are equivariantly isometric, hence have same minimal displacement $s=\frac{1}{D}$ . So we have that $\frac{1}{\lambda _k}L_{\rho _k} \to L$ as wanted.
We now have the ingredients needed to prove Theorem 1.1, which we recall for the reader’s convenience:
Proposition 4.2. The boundary of $\Xi _{\text{Max}}(\Gamma,\textrm{PSL}(2,{\mathbb{R}})^n)=\mathcal{T}^n$ in the Weyl chamber length compactification is ${\mathbb{P}}(({\mathcal{ML}})^n)$ .
Proof. It is easy to see that $\partial ^{\textrm{WL}}(\mathcal{T}^n)\subset{\mathbb{P}}(({\mathcal{ML}})^n)$ . Let indeed $\rho _k=(\rho _{k,i})_{i=1,\ldots,n}$ , $k\in{\mathbb{N}}$ , be a sequence in ${\textrm{Hom}}(\Gamma,\textrm{PSL}(2,{\mathbb{R}})^n)$ , which we identify with ${\textrm{Hom}}(\Gamma,\textrm{PSL}(2,{\mathbb{R}}))^n$ . We write a nonzero function $\overrightarrow{L}\colon \Gamma \to{\mathbb{R}}^n$ as $\overrightarrow{L}=(L_i)_{i=1,\ldots,n}$ with $L_i\colon \Gamma \to{\mathbb{R}}$ . The sequence of conjugacy classes $[\rho _k]$ converges to the homothety class $[\overrightarrow{L}]$ in the Weyl chamber length compactification if and only if there exists a sequence of positive real numbers $\lambda _k\to \infty$ (scale sequence) such that the renormalized Weyl chamber length function $\frac{1}{\lambda _k}\overrightarrow{L}_{\rho _k}$ converges to $\overrightarrow{L}$ , that is, if $\frac{1}{\lambda _k}L_{\rho _{k,i}}$ converges to $L_i$ for all $i=1,\ldots,n$ [Reference Parreau25, Theorem 5.6]. Then either $L_i=0$ or $[\rho _{k,i}]$ converges to $[L_i]$ in the length compactification $\overline{\mathcal{T}}$ of $\mathcal{T}$ . As $\partial \mathcal{T}={\mathbb{P}}({\mathcal{ML}})$ , we have that each $L_i$ belongs to $\mathcal{ML}$ , hence $[\overrightarrow{L}]$ belongs to ${\mathbb{P}}(({\mathcal{ML}})^n)$ .
The converse implication is a consequence of Lemma 4.1. Let $\overrightarrow{L}=(L_i)_{i=1,\ldots,n}\in ({\mathcal{ML}})^n$ . Using Lemma 4.1 with scale sequence $\lambda _k=k$ , we can construct for each $i=1,\ldots,n$ a sequence of maximal representations $\rho _{k,i}:\Gamma \to \textrm{PSL}(2,{\mathbb{R}})$ , $k\in{\mathbb{N}}$ , whose renormalized length function $\frac{1}{k}L_{\rho _{k,i}}$ converges to the length function $L_i$ in $({\mathbb{R}}_+)^\Gamma$ as $k\to \infty$ . We now consider for $k\in{\mathbb{N}}$ the product representation $\rho _k\;:\! =\;(\rho _{k,i})_{i=1,\ldots,n}\colon \Gamma \to \textrm{PSL}(2,{\mathbb{R}})^n$ , which, being a product of maximal representations, is a maximal representation. Then $\frac{1}{k}\overrightarrow{L}_{\rho _k}=(\frac{1}{k}L_{\rho _{k,i}})_{i=1,\ldots,n}$ converges to $(L_i)_{i=1,\ldots,n}=\overrightarrow{L}$ as $k\to \infty$ . Hence, $[\overrightarrow{L}]$ belongs to $\partial ^{\textrm{WL}}(\mathcal{T}^n)$ .
As a result, we deduce that ${\mathbb{P}}(({\mathcal{ML}})^n)\subset{\mathbb{P}}(({\mathbb{R}}_+^\Gamma )^n)$ is a sphere of dimension $n(6g-6)-1$ , being the topological join of $n$ spheres:
Corollary 4.3. The boundary of $\Xi _{\text{Max}}(\Gamma,\textrm{PSL}(2,{\mathbb{R}})^n)=\mathcal{T}^n$ in the Weyl chamber length compactification is homeomorphic to $\mathbb S^{n(6g-6)-1}$ .
4.2. Applications to other length compactifications
As an application of Proposition 4.2, we can also understand various other compactifications of $\Xi _{\text{Max}}(\Gamma,\textrm{PSL}(2,{\mathbb{R}})^n)$ :
Corollary 4.4. For any $W$ -invariant norm $N\colon{\mathbb{R}}^n\to{\mathbb{R}}_+^n$ , the boundary of $\Xi _{\text{Max}}(\Gamma,\textrm{PSL}(2,{\mathbb{R}})^n)$ in the $N$ -length compactification is the projectivization ${\mathbb{P}}(N(({\mathcal{ML}})^n))$ of the image $N(({\mathcal{ML}})^n)$ of $({\mathcal{ML}})^n$ by the map sending $\overrightarrow{L}\colon \Gamma \to{\mathbb{R}}^n$ to $N\circ \overrightarrow{L}\colon \Gamma \to{\mathbb{R}}$ .
In particular, the boundary of $\mathcal{T}^n$ in the $\ell ^1$ -length compactification is the projectivization ${\mathbb{P}}(\sum _{i=1}^n{\mathcal{ML}})$ of the space of geodesic currents that can be decomposed as the sum of $n$ measured laminations.
Remark 4.5. While the map $({\mathcal{ML}})^2\to (\sum _{i=1}^2{\mathcal{ML}})$ has fibers of cardinality 2 on the set of geodesic currents with positive systole, the fiber over minimal measured laminations (and more generally over geodesic currents that admit a Bonahon-orthogonal decomposition $\mu =\mu _1+\mu _2$ with $\mu _1$ a minimal measured lamination) is higher dimensional. As a result it is, in general, not clear how to determine the topology of ${\mathbb{P}}(\sum _{i=1}^2{\mathcal{ML}})$ . Indeed it follows from the arguments in [ Reference Duchin, Leininger and Rafi9, Theorem 2] that no finite set of simple closed curves is sufficient to separate points in ${\mathbb{P}}(\sum _{i=1}^2{\mathcal{ML}})$ . This is in strong contrast to ${\mathbb{P}}(({\mathcal{ML}})^2)$ : there is a collection of $9g-9$ simple closed curves on $\Sigma$ whose ${\mathbb{R}}^2$ -length function already separate points in ${\mathbb{P}}(({\mathcal{ML}})^2)$ .
5. ${\mathbb{R}}^2$ -mixed structures
The purpose of this section is to prove Theorem 1.2 from the introduction, which interprets points in ${\mathcal{ML}}\times{\mathcal{ML}}$ as length functions of mixed structures. For this we introduce the notion of flat structures in Section 5.1, mixed structures in Section 5.2, and their associated length functions in Section 5.3, and prove the result in Section 5.4.
5.1. Flat structures
We will consider flat structures on a punctured finite type surfaces, namely the complement of a finite set of marked points considered as punctures in a compact topological surfaces. When dealing with mixed structures, the finite type surfaces will typically be obtained from geodesic subsurfaces of the original surface $\Sigma$ by collapsing each boundary components to a cusp point.
Definition 5.1. A half-translation structure $K$ on a finite type surface $\Sigma$ is a $({\mathbb{R}}^2\rtimes{\mathbb{Z}}/2{\mathbb{Z}},{\mathbb{R}}^2)$ -structure on $\Sigma$ , with conical singularities of angle $k\pi$ , $k\geq 2$ , extendible at punctures, with possibly angle $\pi$ singularities at the punctures.
With a slight abuse of notation we denote by $\overrightarrow{\textrm{Flat}}(\Sigma )$ the moduli space of half-translation structures on $\Sigma$ , where two such structures are identified if they are isotopic. Note that the flat structures we consider here are directed (i.e.,, with a preferred vertical direction).
Remark 5.2. Duchin−Leiniger−Rafi [Reference Duchin, Leininger and Rafi9], as well as Ouyang−Tamburelli [Reference Ouyang and Tamburelli21] consider, instead, the space of flat structures on $\Sigma$ , where they identify isometric marked structures. As a result, we have fibrations
The fiber of $\overrightarrow{\textrm{Flat}}(\Sigma )\to{\textrm{Flat}}(\Sigma )$ is the circle $\mathbb S^1$ , which acts on a half-translation surface by rotation. Since our structures are marked, and any half-translation structure induces a conformal structure on the surface, the space $\overrightarrow{\textrm{Flat}}(\Sigma )$ fibers over the Teichmüller space. We will never need this fact, but it is well known that the fiber over $X$ in this fibration identifies with the space of holomorphic quadratic differentials over the Riemann surface $X$ .
Let $K$ be a flat structure on $\Sigma$ , and let $\mathcal{F}_1$ , $\mathcal{F}_2$ be the vertical and horizontal measured foliations of $K$ . This is a pair of transverse measured foliations. For $i=1,2$ , we denote by
and by $d_{{K},i}\;:\!=\;d_{\mathcal{F}_i}$ the associated pseudometric on $\widetilde{\Sigma }$ This defines the natural ${\mathbb{R}}^2$ -metric
on $\widetilde{\Sigma }$ . We denote $L_{{K},i}\;:\!=\;I_{\mathcal{F}_i}\colon \Gamma \to{\mathbb{R}}$ the corresponding length function. Let $T(\mathcal{F}_i)\;:\!=\;\widetilde{\Sigma }/d_{{K},i}$ be the dual tree of $\mathcal{F}_i$ , and $p_i\colon \widetilde{\Sigma }\to T(\mathcal{F}_i)$ the corresponding projection.
The universal cover $\widetilde{\Sigma }$ of $\Sigma$ is a CAT(0) metric space for the flat metric associated to $K$ , which we will denote by $d_{{\textrm{CAT}}(0)}$ . Note that $d_{{\textrm{CAT}}(0)}$ is not in general equal to the metric $\|\overrightarrow{d}_{K}\|_2$ induced from the ${\mathbb{R}}^2$ -metric $\overrightarrow{d}$ by taking the $\ell ^2$ -norm, nevertheless it is the associated length metric. We denote $\widetilde{\Sigma }^c$ the completion of $\widetilde{\Sigma }$ with respect to $d_{{\textrm{CAT}}(0)}$ , which consists in adding one fixed point $x_{{\widetilde{c}}}$ for each parabolic subgroup $\Gamma _{{\widetilde{c}}}$ of $\Gamma =\pi _1(\Sigma )$ (corresponding to lifts $\widetilde{c}$ of punctures $c$ of $\Sigma$ ), see for example [Reference Morzadec18, Lemma 7.2]. The flat structure extends on $\widetilde{\Sigma }^c$ . It is easy to see that $\mathcal{F}_i$ , $d_{{K},i}$ , and $p_i$ extend naturally to the completion $\widetilde{\Sigma }^c$ of $\widetilde{\Sigma }$ .
We define the $\ell ^1$ -length metric on $\widetilde{\Sigma }$ , as the Finsler metric $d_{K}$ induced by the