Skip to main content Accessibility help
×
×
Home

SAMELSON PRODUCTS IN p-REGULAR SO(2n) AND ITS HOMOTOPY NORMALITY

  • DAISUKE KISHIMOTO (a1) and MITSUNOBU TSUTAYA (a2)

Abstract

A Lie group is called p-regular if it has the p-local homotopy type of a product of spheres. (Non)triviality of the Samelson products of the inclusions of the factor spheres into p-regular SO(2n (p) is determined, which completes the list of (non)triviality of such Samelson products in p-regular simple Lie groups. As an application, we determine the homotopy normality of the inclusion SO(2n − 1) → SO(2n) in the sense of James at any prime p.

Copyright

References

Hide All
1. Adams, J. F., The sphere, considered as an H-space mod p , Quart. J. Math. 12 (1961), 5260.
2. Bott, R., A note on the Samelson products in the classical groups, Comment. Math. Helv. 34 (1960), 249256.
3. Friedlander, E. M., Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. Math. 101 (1975), 510520.
4. Hamanaka, H. and Kono, A., A note on the Samelson products in π*(SO(2n)) and the group [SO(2n), SO(2n)], Topology Appl. 154 (3) (2007), 567572.
5. Hamanaka, H. and Kono, A., A note on Samelson products and mod p cohomology of classifying spaces of the exceptional Lie groups, Topology Appl. 157 (2) (2010), 393400.
6. Hasui, S., Kishimoto, D. and Ohsita, A., Samelson products in p-regular exceptional Lie groups, Topology Appl. 178 (1) (2014), 1729.
7. James, I. M., On homotopy theory of classical groups, Ann. Acad. Brasil. Cienc. 39 (1967), 3944.
8. Kumpel, P. G., Mod p-equivalences of mod p H-spaces, Quart. J. Math. 23 (1972), 173178.
9. Kaji, S. and Kishimoto, D., Homotopy nilpotency in p-regular loop spaces, Math. Z. 264 (1) (2010), 209224.
10. Kono, A. and Oshima, H., Commutativity of the group of self homotopy classes of Lie groups, Bull. London Math. Soc. 36 (2004), 3752.
11. Lin, J., H-spaces with finiteness conditions, in Handbook of algebraic topology (James I. M., Editors) (Elsevier, North-Holland, 1995), 10951141, Chapter 22.
12. Mahowald, M., A Samelson product in SO(2n), Bol. Soc. Math. Mexicana 10 (1965), 8083.
13. Morisugi, K., Hopf construction, Samelson products and suspension maps, Contemporary Math. 239 (1999), 225238.
14. Toda, H., Composition methods in homotopy groups of spheres, Ann. of Math. Studies, vol. 49 (Princeton University Press, Princeton N.J., 1962).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed