Skip to main content Accessibility help
×
×
Home

QUANTISATION SPACES OF CLUSTER ALGEBRAS

  • FLORIAN GELLERT (a1) and PHILIPP LAMPE (a1)

Abstract

The article concerns the existence and uniqueness of quantisations of cluster algebras. We prove that cluster algebras with an initial exchange matrix of full rank admit a quantisation in the sense of Berenstein-Zelevinsky and give an explicit generating set to construct all quantisations.

Copyright

References

Hide All
1. Berenstein, A., Fomin, S. and Zelevinsky, A., Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (1) (2005), 152.
2. Berenstein, A. and Zelevinsky, A., Quantum cluster algebras, Adv. Math. 195 (2) (2005), 405455.
3. Burban, I., Iyama, O., Keller, B. and Reiten, I., Cluster tilting for one-dimensional hypersurface singularities. Adv. Math. 217 (6) (2008), 24432484.
4. Caldero, P. and Chapoton, F., Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (3) (2006), 595616.
5. Cayley, A., Sur les déterminants gauches, J. Reine Angew. Math. 38 (1849), 9396.
6. Fock, V. V. and Goncharov, A. B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. École Norm. Sup., série 4, 42 (6) (2009), 865930.
7. Fomin, S., Shapiro, M. and Thurston, D., Cluster algebras and triangulated surfaces, I. Cluster complexes, Acta Math. 201 (1) (2008), 83146.
8. Fomin, S. and Thurston, D., Cluster algebras and triangulated surfaces. Part II: Lambda lengths. Preprint: arXiv 1210.5569 (2012). To appear in Memoirs of Amer. Math. Soc.
9. Fomin, S. and Zelevinsky, A., Cluster algebras. I. Foundations. J. Amer. Math. Soc. 15 (2) (2002), 497529 (electronic).
10. Fomin, S. and Zelevinsky, A., Cluster algebras. II. Finite type classification, Invent. Math. 154 (1) (2003), 63121.
11. Fomin, S. and Zelevinsky, A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (1) (2007), 112164.
12. Geiß, C., Leclerc, B. and Schröer, J., Cluster structures on quantum coordinate rings, Selecta Math. (N.S.) 19 (2) (2013), 337397.
13. Gekhtman, M., Shapiro, M. and Vainshtein, A., Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (3) (2003), 899934.
14. Gellert, F., Sage functions for the quantisation of cluster algebras. http://math.uni-bielefeld.de/~fgellert/quantisation.php
15. Goodearl, K. R. and Yakimov, M. T., Quantum cluster algebra structures on quantum nilpotent algebras. Mem. Amer. Math. Soc. 247 (1169) (2017), vii+119 pp.
16. Grabowski, J. E., Graded cluster algebras, J. Algebr. Combin. 42 (4) (2015), 11111134.
17. Grabowski, J. E. and Launois, S., Graded quantum cluster algebras and an application to quantum grassmannians, Proc. London Math. Soc. 109 (3) (2014), 697732.
18. Hernandez, D. and Leclerc, B., Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2) (2010), 265341.
19. Knuth, D. E., Overlapping Pfaffians, Electron. J. Combin. 3 (2), Research Paper 5 (1996).
20. Kimura, Y. and Qin, F., Graded quiver varieties, quantum cluster algebras and dual canonical basis, Adv. Math. 262 (2014), 261312.
21. Lampe, P., A quantum cluster algebra of Kronecker type and the dual canonical basis, Int. Math. Res. Not. IMRN 2011 (13) (2011), 29703005.
22. Lampe, P., Quantum cluster algebras of type A and the dual canonical basis, Proc. London Math. Soc. 108 (2014), 143.
23. Leclerc, B., Dual canonical bases, quantum shuffles and q-characters, Math. Z. 246 (4) (2004), 691732.
24. Lusztig, G., Introduction to quantum groups, Progress in mathematics, vol. 110 (Birkhäuser Boston Inc., Boston, MA, 1993).
25. Rupel, D., The Feigin tetrahedron, SIGMA 11 (024) (2015), 30 pages.
26. Zelevinsky, A., Quantum cluster algebras, Lecture, Infinite Analysis, vol. 11 (Winter School, Osaka University, Japan, 2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed