Skip to main content Accessibility help


  • S. R. LÓPEZ-PERMOUTH (a1), J. MASTROMATTEO (a1), Y. TOLOOEI (a2) and B. UNGOR (a3)


The study of pure-injectivity is accessed from an alternative point of view. A module M is called pure-subinjective relative to a module N if for every pure extension K of N, every homomorphism NM can be extended to a homomorphism KM. The pure-subinjectivity domain of the module M is defined to be the class of modules N such that M is N-pure-subinjective. Basic properties of the notion of pure-subinjectivity are investigated. We obtain characterizations for various types of rings and modules, including absolutely pure (or, FP-injective) modules, von Neumann regular rings and (pure-) semisimple rings in terms of pure-subinjectivity domains. We also consider cotorsion modules, endomorphism rings of certain modules, and, for a module N, (pure) quotients of N-pure-subinjective modules.



Hide All
1. Alahmadi, A. N., Alkan, M. and López-Permouth, S. R., Poor modules: The opposite of injectivity, Glasgow Math. J. 52 (A) (2010), 717.
2. Al Thani, N. M., Pure Baer injective modules, Internat. J. Math. Math. Sci. 20 (3) (1997), 529538.
3. Aydogdu, P. and López-Permouth, S. R., An alternative perspective on injectivity of modules, J. Algebra 338 (1) (2011), 207219.
4. Bican, L., El Bashir, R. and Enochs, E., All modules have flat covers, Bull. London Math. Soc. 33 (4) (2001), 385390.
5. Er, N., López-Permouth, S. R. and Sokmez, N., Rings whose modules have maximal and minimal injectivity domains, J. Algebra 330 (1) (2011), 404417.
6. Harmanci, A., López-Permouth, S. R. and Ungor, B., On the pure-injectivity profile of a ring, Comm. Algebra 43 (11) (2015), 49845002.
7. Lam, T. Y., Lectures on modules and rings (Springer-Verlag, New York, 1999).
8. López-Permouth, S. R. and Simental, J., Characterizing rings in terms of the extent of the injectivity and projectivity of their modules, J. Algebra 362 (2012), 5669.
9. Maddox, B. H., Absolutely pure modules, Proc. Amer. Math. Soc. 18 (1967), 155158.
10. Prest, M., Pure-injective modules, Arab. J. Sci. Eng. Sect. A Sci. 34 (1D) (2009), 175191.
11. Rotman, J. J., An introduction to homological algebra (Academic Press, New York, 1979).
12. Stenström, B., Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970), 323329.
13. Tuganbaev, A., Rings close to regular, Mathematics and its Applications, 545, Kluwer Academic Publishers, Dordrecht, 2002.
14. Warfield, R. B. Jr, Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699719.
15. Wisbauer, R., Foundations of module and ring theory (Gordon and Breach Science Publishers, Philadelphia, 1991).
16. Xu, J., Flat covers of modules (Springer-Verlag, Berlin, Heidelberg, 1996).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed