Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-92xsl Total loading time: 0.256 Render date: 2021-04-20T23:11:40.867Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

POOR MODULES: THE OPPOSITE OF INJECTIVITY

Published online by Cambridge University Press:  24 June 2010

ADEL N. ALAHMADI
Affiliation:
Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia e-mail: analahmadi@kau.edu.sa
MUSTAFA ALKAN
Affiliation:
Department of Mathematics, Akdeniz University, Antalya, Turkey e-mail: alkan@akdeniz.edu.tr
SERGIO LÓPEZ-PERMOUTH
Affiliation:
Department of Mathematics, Ohio University, Athens, OH 45701, USA e-mail: lopez@math.ohiou.edu
Rights & Permissions[Opens in a new window]

Abstract

A module M is called poor whenever it is N-injective, then the module N is semisimple. In this paper the properties of poor modules are investigated and are used to characterize various families of rings.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2010

References

1.Anderson, F. W. and Fuller, K. R., Rings and categories of modules (Springer-Verlag, New-York, 1974).CrossRefGoogle Scholar
2.Boyle, A. K., Hereditary QI rings, Trans. Amer. Math. Soc. 192 (1974), 115120.Google Scholar
3.Boyle, A. K. and Goodearl, K. R., Rings over which certain modules are injective, Pacific J. Math. 58 (1975), 4353.CrossRefGoogle Scholar
4.Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending modules. Pitman RN mathematics 313 (Longman, Harlow, UK, 1994).Google Scholar
5.Faith, C., When are all proper cyclics injective?, Pacific J. Math. 45 (1973), 97112.CrossRefGoogle Scholar
6.Faith, C., Algebra: Rings, modules and categories II (Springer-Verlag, New York/Berlin/Heidelberg, 1976).Google Scholar
7.Faith, C., On hereditary rings and Boyle's conjecture, Arch. Math. (Basel) 27 (1976), 113119.CrossRefGoogle Scholar
8.Gómez-Pardo, J. L. and Yousif, M. F., Semiperfect Min-CS Rings, Glasgow Math. J. 41 (1999), 231238.CrossRefGoogle Scholar
9.Goodearl, K. R., Singular torsion and the splitting properties, American Mathematical Society, Memoirs of the AMS, Number 124 (Providence, Rhode Island, 1972).Google Scholar
10.Dinh Van, H., Smith, P. F. and Wisbauer, R., A note on GV-modules with Krull dimension. Glasgow Math. J. 32 (3) (1990), 389390.Google Scholar
11.Lam, T. Y., A first course in noncommutative rings, 2nd. Ed. (Springer-Verlag, New York/Berlin/Heidelberg, 2001).CrossRefGoogle Scholar
12.Michler, G. O. and Villamayor, O. E., On rings whose simpe modules are injective, J. Algebra 25 (1973), 185201.CrossRefGoogle Scholar
13.Mohamed, S. H. and Müller, B. J., Continuous and discrete modules, London Mathematical Society Lecture Note 147 (Cambridge University Press, Cambridge, UK, 1990).CrossRefGoogle Scholar
14.Nicholson, W. K. and Yousif, M. F., Weakly continuous and C2 conditions. Comm. Algebra 29 (6) (2001), 24292446.CrossRefGoogle Scholar
15.Özcan, A. Ç. and Alkan, M., Semiperfect modules with respect to a preradical, Comm. Algebra 34 (2006), 841856.CrossRefGoogle Scholar
16.Singh, S., Quasi-injective and quasi-projective modules over hereditary Noetherian prime rings, Can. J. Math. 26 (1974), 11731185.CrossRefGoogle Scholar
17.Singh, S., Modules over hereditary Noetherian prime rings, Can. J. Math. 27 (1975), 867883.CrossRefGoogle Scholar
18.Singh, S., Modules over hereditary Noetherian prime rings, II, Can. J. Math. 28 (1976), 7382.CrossRefGoogle Scholar
19.Smith, P. F., CS-modules and weak CS-modules, in noncommutative ring theory, Lecture Notes in Mathematics, 1448 (Springer, Berlin, 1990), 99115.Google Scholar
20.Wisbauer, R., Foundations of module and ring theory (Gordon and Breach, Reading, UK, 1991).Google Scholar
21.Yousif, M. F., On continuous rings, J. Algebra 191 (1997), 495509.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 273 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 20th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

POOR MODULES: THE OPPOSITE OF INJECTIVITY
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

POOR MODULES: THE OPPOSITE OF INJECTIVITY
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

POOR MODULES: THE OPPOSITE OF INJECTIVITY
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *