Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-9mfzn Total loading time: 0.579 Render date: 2021-04-15T00:15:03.742Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

ON THE OSOFSKY–SMITH THEOREM*

Published online by Cambridge University Press:  24 June 2010

SEPTIMIU CRIVEI
Affiliation:
Faculty of Mathematics and Computer Science, “Babeş-Bolyai” University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania e-mail: crivei@math.ubbcluj.ro
CONSTANTIN NĂSTĂSESCU
Affiliation:
Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, 010014 Bucharest, Romania e-mail: cnastase@al.math.unibuc.ro
BLAS TORRECILLAS
Affiliation:
Departamento de Álgebra y Análisis, Universidad de Almería, 04071 Almería, Spain e-mail: btorreci@ual.es
Rights & Permissions[Opens in a new window]

Abstract

We recall a version of the Osofsky–Smith theorem in the context of a Grothendieck category and derive several consequences of this result. For example, it is deduced that every locally finitely generated Grothendieck category with a family of completely injective finitely generated generators is semi-simple. We also discuss the torsion-theoretic version of the classical Osofsky theorem which characterizes semi-simple rings as those rings whose every cyclic module is injective.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2010

References

1.Crivei, S., On τ-complemented modules, Mathematica (Cluj) 45 (68) (2003), 127136.Google Scholar
2.Dickson, S. E., A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223235.CrossRefGoogle Scholar
3.Dung, N. V., Huynh, D. V., Smith, P. F. and Wisbauer, R., Extending modules, Pitman Research Notes in Mathematics Series, vol. 313 (Longman Scientific & Technical, Harlow, UK, 1994).Google Scholar
4.Golan, J. S., Torsion theories, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 29 (Longman Scientific & Technical, Harlow, UK, 1986).Google Scholar
5.Gómez Pardo, J. L., Dung, N. V. and Wisbauer, R., Complete pure injectivity and endomorphism rings, Proc. Amer. Math. Soc. 118 (1993), 10291034.CrossRefGoogle Scholar
6.Hügel, L. A., Bazzoni, S. and Herbera, D., A solution to the Baer splitting problem, Trans. Amer. Math. Soc. 360 (2008), 24092421.CrossRefGoogle Scholar
7.Lam, T. Y., Lectures on modules and rings (Springer, New York, 1999).CrossRefGoogle Scholar
8.Osofsky, B. L., Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645650.CrossRefGoogle Scholar
9.Osofsky, B. L., Noninjective cyclic modules, Proc. Amer. Math. Soc. 19 (1968), 13831384.CrossRefGoogle Scholar
10.Osofsky, B. L. and Smith, P. F., Cyclic modules whose quotients have all complement submodules direct summands, J. Algebra 139 (1991), 342354.CrossRefGoogle Scholar
11.Smith, P. F., Viola-Prioli, A. M. and Viola-Prioli, J. E., Modules complemented with respect to a torsion theory, Comm. Algebra 25 (1997), 13071326.CrossRefGoogle Scholar
12.Stenström, B., Rings of quotients (Springer-Verlag, Berlin, 1975).CrossRefGoogle Scholar
13.de Viola-Prioli, A. M. and Viola-Prioli, J. E., The smallest closed subcategory containing the μ-complemented modules, Comm. Algebra 28 (2000), 49714980.CrossRefGoogle Scholar
14.Wisbauer, R., Foundations of module and ring theory (Gordon and Breach, Reading, UK, 1991).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 78 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ON THE OSOFSKY–SMITH THEOREM*
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

ON THE OSOFSKY–SMITH THEOREM*
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

ON THE OSOFSKY–SMITH THEOREM*
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *