Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T06:44:03.643Z Has data issue: false hasContentIssue false

ON THE OSOFSKY–SMITH THEOREM*

Published online by Cambridge University Press:  24 June 2010

SEPTIMIU CRIVEI
Affiliation:
Faculty of Mathematics and Computer Science, “Babeş-Bolyai” University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania e-mail: crivei@math.ubbcluj.ro
CONSTANTIN NĂSTĂSESCU
Affiliation:
Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, 010014 Bucharest, Romania e-mail: cnastase@al.math.unibuc.ro
BLAS TORRECILLAS
Affiliation:
Departamento de Álgebra y Análisis, Universidad de Almería, 04071 Almería, Spain e-mail: btorreci@ual.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We recall a version of the Osofsky–Smith theorem in the context of a Grothendieck category and derive several consequences of this result. For example, it is deduced that every locally finitely generated Grothendieck category with a family of completely injective finitely generated generators is semi-simple. We also discuss the torsion-theoretic version of the classical Osofsky theorem which characterizes semi-simple rings as those rings whose every cyclic module is injective.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2010

References

REFERENCES

1.Crivei, S., On τ-complemented modules, Mathematica (Cluj) 45 (68) (2003), 127136.Google Scholar
2.Dickson, S. E., A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223235.Google Scholar
3.Dung, N. V., Huynh, D. V., Smith, P. F. and Wisbauer, R., Extending modules, Pitman Research Notes in Mathematics Series, vol. 313 (Longman Scientific & Technical, Harlow, UK, 1994).Google Scholar
4.Golan, J. S., Torsion theories, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 29 (Longman Scientific & Technical, Harlow, UK, 1986).Google Scholar
5.Gómez Pardo, J. L., Dung, N. V. and Wisbauer, R., Complete pure injectivity and endomorphism rings, Proc. Amer. Math. Soc. 118 (1993), 10291034.CrossRefGoogle Scholar
6.Hügel, L. A., Bazzoni, S. and Herbera, D., A solution to the Baer splitting problem, Trans. Amer. Math. Soc. 360 (2008), 24092421.CrossRefGoogle Scholar
7.Lam, T. Y., Lectures on modules and rings (Springer, New York, 1999).Google Scholar
8.Osofsky, B. L., Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645650.CrossRefGoogle Scholar
9.Osofsky, B. L., Noninjective cyclic modules, Proc. Amer. Math. Soc. 19 (1968), 13831384.CrossRefGoogle Scholar
10.Osofsky, B. L. and Smith, P. F., Cyclic modules whose quotients have all complement submodules direct summands, J. Algebra 139 (1991), 342354.Google Scholar
11.Smith, P. F., Viola-Prioli, A. M. and Viola-Prioli, J. E., Modules complemented with respect to a torsion theory, Comm. Algebra 25 (1997), 13071326.CrossRefGoogle Scholar
12.Stenström, B., Rings of quotients (Springer-Verlag, Berlin, 1975).CrossRefGoogle Scholar
13.de Viola-Prioli, A. M. and Viola-Prioli, J. E., The smallest closed subcategory containing the μ-complemented modules, Comm. Algebra 28 (2000), 49714980.Google Scholar
14.Wisbauer, R., Foundations of module and ring theory (Gordon and Breach, Reading, UK, 1991).Google Scholar