Skip to main content Accessibility help
×
×
Home

ON THE ORDER STRUCTURE OF REPRESENTABLE FUNCTIONALS

  • ZSIGMOND TARCSAY (a1) and TAMÁS TITKOS (a2)

Abstract

The main purpose of this paper is to investigate some natural problems regarding the order structure of representable functionals on *-algebras. We describe the extreme points of order intervals, and give a non-trivial sufficient condition to decide whether or not the infimum of two representable functionals exists. To this aim, we offer a suitable approach to the Lebesgue decomposition theory, which is in complete analogy with the one developed by Ando in the context of positive operators. This tight analogy allows to invoke Ando's results to characterize uniqueness of the decomposition, and solve the infimum problem over certain operator algebras.

Copyright

References

Hide All
1. Anderson, W. N. Jr. and Trapp, G. E., The extreme points of a set of positive semidefinite operators, Linear Algebra Appl. 106 (1988), 209217.
2. Ando, T., Lebesgue-type decomposition of positive operators, Acta Sci. Math. (Szeged) 38 (3–4) (1976), 253260.
3. Ando, T., Problem of infimum in the positive cone, in Analytic and geometric inequalities and applications, (Rassias, T. M. and Srivastava, H. M., Editors), Math. Appl., vol. 478 (Kluwer Acad. Publ., Dordrecht, 1999), 112.
4. Eriksson, S. L. and Leutwiler, H., A potential theoretic approach to parallel addition, Math. Ann. 274 (2) (1986), 301317.
5. Green, W. L. and Morley, T. D., The extreme points of order intervals of positive operators, Adv. Appl. Math. 15 (3) (1994), 360370.
6. Gudder, S., A Radon-Nikodym theorem for *-algebras, Pacific J. Math. 80 (1) (1979), 141149.
7. Gudder, S. and Moreland, T., Infima of Hilbert space effects, Linear Algebra Appl. 286 (1–3) (1999), 117.
8. Hassi, S., Sebestyén, Z. and de Snoo, H., Lebesgue type decompositions for nonnegative forms, J. Funct. Anal. 257 (12) (2009), 38583894.
9. Kadison, R. V. and Ringrose, J. R., Fundamentals of the theory of operator algebras I. (Academic Press, New York, 1983).
10. Kosaki, H., Lebesgue decomposition of states on a von Neumann algebra, Am. J. Math. 107 (3) (1985), 697735.
11. Palmer, T. W., Banach algebras and the general theory of *-algebras II (Cambridge University Press, Cambridge, 2001).
12. Pekarev, E. L., Shorts of operators and some extremal problems, Acta Sci. Math. (Szeged) 56 (1–2) (1992), 147163.
13. Riesz, F., Sur quelques notions fondamentales dans la théorie générale des opérations linéaires, Ann. of Math. 41 (1) (1940), 174206.
14. Sakai, S., C*-Algebras and W*-algebras (Springer-Verlag, Berlin-Heidelberg, New York, 1971).
15. Sebestyén, Z., On representability of linear functionals on *-algebras, Period. Math. Hungar. 15 (3) (1984), 233239.
16. Szűcs, Zs., On the Lebesgue decomposition of positive linear functionals, Proc. Am. Math. Soc. 141 (2) (2013), 619623.
17. Tarcsay, Zs., Lebesgue decomposition for representable functionals on *-algebras, Glasgow Math. J. 58 (2) (2016), 491501.
18. Tarcsay, Zs., On the parallel sum of positive operators, forms, and functionals, Acta Math. Hungar. 147 (2) (2015), 408426.
19. Titkos, T., Ando's theorem for nonnegative forms, Positivity 16 (4) (2012), 619626.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed