Skip to main content Accessibility help
×
×
Home

NON-NEGATIVE DEFORMATIONS OF WEIGHTED HOMOGENEOUS SINGULARITIES

  • J. J. NUÑO-BALLESTEROS (a1), B. ORÉFICE-OKAMOTO (a2) and J. N. TOMAZELLA (a2)

Abstract

We consider a weighted homogeneous germ of complex analytic variety (X, 0) ⊂ (ℂ n , 0) and a function germ f : (ℂ n , 0) → (ℂ, 0). We derive necessary and sufficient conditions for some deformations to have non-negative degree (i.e., for any additional term in the deformation, the weighted degree is not smaller) in terms of an adapted version of the relative Milnor number. We study the cases where (X, 0) is an isolated hypersurface singularity and the invariant is the Bruce-Roberts number of f with respect to (X, 0), and where (X, 0) is an isolated complete intersection or a curve singularity and the invariant is the Milnor number of the germ f: (X, 0) → ℂ. In the last part, we give some formulas for the invariants in terms of the weights and the degrees of the polynomials.

Copyright

References

Hide All
1. Ahmed, I., Ruas, M. A. S. and Tomazella, J. N., Invariants of topological relative right equivalence, Math. Proc. Cambridge Philos. Soc. 155 (2) (2013), 307315.
2. Bivià-Ausina, C. and Nuño-Ballesteros, J. J., Multiplicity of iterated Jacobian extensions of weighted homogeneous map germs, Hokkaido Math. J. 29 (2) (2000), 341368.
3. Bruce, J. W. and Roberts, R. M., Critical points of functions on analytic varieties, Topology 27 (1) (1988), 5790.
4. Bruns, W. and Herzog, J., Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39 (Cambridge University Press, Cambridge, UK, 1993).
5. Buchweitz, R. O. and Greuel, G. M., The Milnor number and deformations of complex curve singularities, Invent. Math. 58 (3) (1980), 241248.
6. Damon, J., Topological triviality and versality for subgroups of A and K: II. Suficient conditions and applications, Nonlinearity 5 (1992), 373412.
7. Furuya, M. and Tomari, M., A characterization of semi-quasihomogeneous functions in terms of the Milnor number, Proc. Amer. Math. Soc. 132 (7) (2004), 18851890.
8. Grulha, N. G. Jr., The Euler obstruction and Bruce-Roberts' Milnor number, Q. J. Math. 60 (3) (2009), 291302.
9. Goryunov, V. V., Functions on space curves, J. London Math. Soc. (2) 61 (2000), 807822.
10. Greuel, G. M., Dualität in der lokalen kohomologie isolierter singularitäten, Math Ann. 250 (1980), 157173.
11. Hamm, H. A., Lokale topologische Eigenschaften komplexer Räume, Math. Ann. 191 (1971), 235252.
12. Tráng, Lê Dũng and Ramanujam, C. P., The invariance of Milnor's number implies the invariance of the topological type, Amer. J. Math. 98 (1) (1976), 6778.
13. Looijenga, E. J. N., Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series, vol. 77 (Cambridge University Press, Cambridge, UK, 1984).
14. Matsumura, H., Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8 (Cambridge University Press, Cambridge, UK, 1989).
15. Milnor, J., Singular points of complex hypersurfaces, Annals of Math. Studies (Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1968).
16. Milnor, J. and Orlik, P., Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385393.
17. Mond, D. and van Straten, D., Milnor number equals Tjurina number for functions on space curves, J. London Math. Soc. (2) 63 (2001), 177187.
18. Nuño-Ballesteros, J. J., Oréfice, B. and Tomazella, J. N., The Bruce-Roberts number of a function on a weighted homogeneous hypersurface, Q. J. Math. 64 (1) (2013), 269280.
19. Nuño-Ballesteros, J. J., Oréfice-Okamoto, B. and Tomazella, J. N., The vanishing Euler characteristic of an isolated determinantal singularity, Israel J. Math. 197 (1) (2013), 475495.
20. Nuño-Ballesteros, J. J. and Tomazella, J. N., The Milnor number of a function on a space curve germ, Bull. Lond. Math. Soc. 40 (1) (2008), 129138.
21. Ruas, M. A. S. and Tomazella, J. N., Topological triviality of families of functions on analytic varieties, Nagoya Math. J., 175 (2004), 3950.
22. Saito, K., Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (2) (1980), 265291.
23. Timourian, J. G., The invariance of Milnor's number implies topological triviality, Amer. J. Math. 99 (2) (1977), 437446.
24. Varchenko, A. N., A lower bound for the codimension of the stratum μ-constant in terms of the mixed hodge structure, Vest. Mosk. Univ. Mat. 37 (1982), 2931.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed