Skip to main content Accessibility help
×
×
Home

FROM COMPLETE TO PARTIAL FLAGS IN GEOMETRIC EXTENSION ALGEBRAS

  • JULIA SAUTER (a1)

Abstract

A geometric extension algebra is an extension algebra of a semi-simple perverse sheaf (allowing shifts), e.g., a push-forward of the constant sheaf under a projective map. Particular nice situations arise for collapsings of homogeneous vector bundles over homogeneous spaces. In this paper, we study the relationship between partial flag and complete flag cases. Our main result is that the locally finite modules over the geometric extension algebras are related by a recollement. As examples, we investigate parabolic affine nil Hecke algebras, geometric extension algebras associated with parabolic Springer maps and an example of Reineke of a parabolic quiver-graded Hecke algebra.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      FROM COMPLETE TO PARTIAL FLAGS IN GEOMETRIC EXTENSION ALGEBRAS
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      FROM COMPLETE TO PARTIAL FLAGS IN GEOMETRIC EXTENSION ALGEBRAS
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      FROM COMPLETE TO PARTIAL FLAGS IN GEOMETRIC EXTENSION ALGEBRAS
      Available formats
      ×

Copyright

References

Hide All
1. Arabia, A., Cohomologie T-équivariante de la variété de drapeaux d'un groupe de Kac-Moody, Bull. Soc. Math. France 117 (2) (1989), 129165.
2. Bernstein, J. and Lunts, V.,. Bd. 1578: Equivariant sheaves and functors, Lecture notes in mathematics, volume 1578 (Springer-Verlag, Berlin, 1994), iv+139 S.
3. Borho, W. and MacPherson, R., Partial resolutions of nilpotent varieties, in Analysis and topology on singular spaces, II, III (Luminy, 1981), vol. 101 (Soc. Math. France, Paris, 1983), 2374.
4. Chriss, N. and Ginzburg, V., Representation theory and complex geometry (Birkhäuser Boston, Inc., Boston, MA, 1997).
5. de Cataldo, M. A. and Migliorini, L., The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. 46 (2009), 535633.
6. Douglass, J. M. and Röhrle, G., The Steinberg variety and representations of reductive groups, J. Algebra 321 (11) (2009), 31583196.
7. Joshua, R., Modules over convolution algebras from equivariant derived categories. I, J. Algebra 203 (2) (1998), 385446.
8. Reineke, M., Quivers, desingularizations and canonical bases, in Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), vol. 210 (Birkhäuser Boston, Boston, MA, 2003), 325344.
9. Sauter, Julia, Generalized quiver Hecke algebras, arXiv:1306.3892 [math.RT].
10. Sauter, Julia, A survey on springer theory, arXiv:1307.0973v3.
11. Stroppel, C. and Webster, B., Quiver Schur algebras and q-Fock space, arXiv:1110.1115v2.
12. Varagnolo, M. and Vasserot, E., Canonical bases and affine Hecke algebras of type B, Invent. Math. 185 (3) (2011), 593693.
13. Varagnolo, M. and Vasserot, E., Canonical bases and KLR-algebras, J. Reine Angew. Math. 659 (2011), 67100.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed