Skip to main content Accessibility help
×
Home

FOCAL SURFACES OF WAVE FRONTS IN THE EUCLIDEAN 3-SPACE

  • KEISUKE TERAMOTO (a1)

Abstract

We characterise singularities of focal surfaces of wave fronts in terms of differential geometric properties of the initial wave fronts. Moreover, we study relationships between geometric properties of focal surfaces and geometric invariants of the initial wave fronts.

Copyright

References

Hide All
1. Arnol'd, V. I., Gusein-Zade, S. M. and Varchenko, A. N., Singularities of differentiable maps, vol. 1, Monographs in mathematics vol. 82 (Birkhäuser, Boston, 1985).
2. Bruce, J. W., Giblin, P. J. and Tari, F., Ridges, crests and sub-parabolic lines of evolving surfaces, Int. J. Comput. Vis. 18 (1995), 195210.
3. Bruce, J. W., Giblin, P. J. and Tari, F., Families of surfaces: Focal sets, ridges and umbilics, Math. Proc. Camb. Philos. Soc. 125 (2) (1999), 243268.
4. Bruce, J. W. and Tari, F., Extrema of principal curvature and symmetry, Proc. Edinb. Math. Soc. 39 (2) (1996), 397402.
5. Bruce, J. W. and Wilkinson, T. C., Folding maps and focal sets, Singularity theory and its applications, part I (Coventry, 1988/1989), 6372, Lecture notes in mathematics, 1462 (Springer, Berlin, 1991).
6. do Carmo, M. P., Riemannian geometry, Mathematics: Theory and applications (Birkhäuser Basel, 1992).
7. Cecil, T. E. and Ryan, P. J., Focal sets of submanifolds, Pac. J. Math. 78 (1) (1978), 2739.
8. Fujimori, S., Saji, K., Umehara, M. and Yamada, K., Singularities of maximal surfaces, Math. Z. 259 (4) (2008), 827848.
9. Fukui, T. and Hasegawa, M., Singularities of parallel surfaces, Tohoku Math. J. 64 (3) (2012), 387408.
10. Fukui, T. and Hasegawa, M., Fronts of Whitney umbrella – a differential geometric approach via blowing up, J. Singul. 4 (2012), 3567.
11. Golubitsky, M. and Guillemin, V., Stable mappings and their singularities, Graduate texts in mathematics, vol. 14 (Springer, 1973).
12. Hasegawa, M., Honda, A., Naokawa, K., Saji, K., Umehara, M. and Yamada, K., Intrinsic properties of surfaces with singularities, Int. J. Math. 26 (4) (2015), 1540008, 34pp.
13. Honda, A., Isometric immersions with singularities between space forms of the same positive curvature, J. Geom. Anal. 27 (2017), 24002417.
14. Ishikawa, G. and Machida, Y., Singularities of improper affine spheres and surfaces of constant Gaussian curvature, Int. J. Math. 17 (3) (2006), 269293.
15. Izumiya, S., Romero Fuster, M. C., Ruas, M. A. S. and Tari, F., Differential geometry from a singularity theory viewpoint (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016).
16. Izumiya, S. and Saji, K., The mandala of Legendrian dualities for pseudo-spheres in Lorentz–Minkowski space and “flat” spacelike surfaces, J. Singul. 2 (2010), 92127.
17. Izumiya, S., Saji, K. and Takahashi, M., Horospherical flat surfaces in hyperbolic 3-space, J. Math. Soc. Jpn. 62 (3) (2010), 789849.
18. Izumiya, S., Saji, K. and Takeuchi, N., Singularities of line congruences, Proc. R. Soc. Edinb. Ser. A 133 (6) (2003), 13411359.
19. Izumiya, S., Saji, K. and Takeuchi, N., Flat surfaces along cuspidal edges, J. Singul. 16 (2017), 73100.
20. Kitagawa, Y. and Umehara, M., Extrinsic diameter of immersed flat tori in S 3, Geom. Dedicata 155 (2011), 105140.
21. Klingenberg, W., A course in differential geometry, Graduate texts in mathematics, vol. 51 (Springer, 1978).
22. Kokubu, M., Rossman, W., Saji, K., Umehara, M. and Yamada, K., Singularities of flat fronts in hyperbolic space, Pac. J. Math. 221 (2) (2005), 303351.
23. Kokubu, M., Rossman, W., Umehara, M. and Yamada, K., Flat fronts in hyperbolic 3-space and their caustics, J. Math. Soc. Jpn. 59 (3) (2007), 265299.
24. Martins, L. F. and Saji, K., Geometric invariants of cuspidal edges, Can. J. Math. 68 (2) (2016), 445462.
25. Martins, L. F., Saji, K., Umehara, M. and Yamada, K., Behavior of Gaussian curvature and mean curvature near non-degenerate singular points on wave fronts, in Geometry and topology of manifolds, Springer proceedings in mathematics & statistics, vol. 154 (Springer, Tokyo, 2016), 247281.
26. Morin, B., Forms canonique des singularités d'une application différentiable, Comptes Rendus Acad. Sci. Paris 260 (1965), 56625665.
27. Morris, R., The sub-parabolic lines of a surface, in The mathematics of surfaces, VI (Uxbridge, 1994), Institute of Mathematics and its Applications Conference Series, New Series58 (Oxford University Press, New York, 1996), 79102.
28. Murata, S. and Umehara, M., Flat surfaces with singularities in Euclidean 3-space, J. Differ. Geom. 221 (2) (2005), 303351.
29. Naokawa, K., Umehara, M. and Yamada, K., Isometric deformations of cuspidal edes, Tohoku Math. J. 68 (1) (2016), 7390.
30. Porteous, I. R., The normal singularities of a submanifold, J. Differ. Geom. 5 (1971), 543564.
31. Porteous, I. R., Geometric differentiation (Cambridge University Press, 2001).
32. Saji, K., Criteria for D 4 singularities of wave fronts, Tohoku Math. J. 63 (1) (2011), 137147.
33. Saji, K., Umehara, M. and Yamada, K., Behavior of corank one singular points on wave fronts, Kyushu J. Math. 62 (1) (2008), 259280.
34. Saji, K., Umehara, M. and Yamada, K., Ak singularities of wave fronts, Math. Proc. Camb. Philos. Soc. 146 (3) (2009), 731746.
35. Saji, K., Umehara, M. and Yamada, K., The geometry of fronts, Ann. Math. (2) 169 (2) (2009), 491529.
36. Tari, F., Caustics of surfaces in the Minkowski 3-space, Q. J. Math. 63 (1) (2012), 189209.
37. Teramoto, K., Parallel and dual surfaces of cuspidal edges, Differ. Geom. Appl. 44 (2016), 5262.
38. Teramoto, K., Principal curvatures and parallel surfaces of wave fronts, to appear in Adv. Geom., arXiv:1612.00577.

MSC classification

FOCAL SURFACES OF WAVE FRONTS IN THE EUCLIDEAN 3-SPACE

  • KEISUKE TERAMOTO (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed