Skip to main content Accessibility help
×
×
Home

COMPACT FACTORIZATION OF OPERATORS WITH λ-COMPACT ADJOINTS

  • ANTARA BHAR (a1) and ANIL K. KARN (a1)

Abstract

Let λ be a symmetric, normal sequence space equipped with a k-symmetric, monotone norm ‖.‖λ. Also, assume that (λ, ‖.‖λ) is AK-BK. Corresponding to this sequence space λ, we study compactness of the operator ideal K λ. We proved compactness, completeness and injectivity of the dual operator ideal K λ d . We also investigate the factorization of these operators.

Copyright

References

Hide All
1. Ain, K., Lillemets, R. and Oja, E., Compact operators which are defined by lp -spaces, Quaest. Math. 35 (2012), 145159.
2. Defant, A. and Floret, K., Tensor norms and operator ideals (North Holland Mathematics Studies 176: North-Holland, Amsterdam, 1993).
3. Delgado, J. M., Piñeiro, C. and Serrano, E., Operators whose adjoints are quasi-p-nuclear, Studia Math. 197 (3) (2010), 291304.
4. Diestel, J., Jarchow, H. and Tonge, A., Absolutely summing operators (Cambridge Stud. Adv. Math., vol 43, Cambridge Univ. Press, Cambridge, 1995).
5. Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires, Memo. Amer. Math. Soc. 16 (1955).
6. Gupta, M. and Bhar, A., On λ-compact operators, Indian J. Pure Appl. Math. 44 (3) (2013), 355374.
7. Kamthan, P. K. and Gupta, M., Sequence Spaces and Series, Lecture Notes in Pure and Applied Mathematics, vol. 65 (Marcel Dekker, Inc., New York, 1981).
8. Karn, A. K. and Sinha, D. P., Compactness and an approximation property related to an operator ideal, arXiv:1207.1947.
9. Lindenstrauss, J., Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964).
10. Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces - sequence spaces (Springer-Verlag, Berlin, 1977).
11. Ortel, F., Composition of operator ideals and their regular hulls, Acta. Univ. Carolin. Math. Phys. 36 (1995), 6972.
12. Pietsch, A., Operator Ideals (North Holland Mathematical Library 20, North Holland Publishing Company: North Holland, Amsterdam, 1980).
13. Pietsch, A., The ideal of p-compact operators and its maximal hull, Proc. Amer. Math. Soc. 142 (2014), 519530.
14. Ramanujan, M. S., Generalized nuclear maps in normed linear spaces, J. Reine Angew Math. 244 (1970), 190197.
15. Ramanujan, M. S., Absolutely λ-summing operators, λ a symmetric sequence space, Math Z. 144 (1970), 187193.
16. Sinha, D. P. and Karn, A. K., Compact operators whose adjoints factor through subspaces of lp , Studia Math. 150 (2002), 1733.
17. Sinha, D. P. and Karn, A. K., Compact operators which factor through subspaces of lp , Math. Nachr. 281 (2008), 412423.
18. Stephani, I., Generating systems of sets and quotients of surjective operator ideals, Math. Nachr. 99 (1980), 1327.
19. Walker, G. R., Compactness of λ-nuclear operators, Michigan Math. J. 23 (1976), 167172.
20. Zippin, M., Extension of bounded linear operators, in Handbook of geometry of Banach spaces, vol. 2 (Johnson, W. B. and Lindenstrauss, J., Editors) (Elsevier, North Holland, Amsterdam, 2003), 17031741.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed