Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T09:39:29.515Z Has data issue: false hasContentIssue false

Zircon U–Pb ages and Hf isotope compositions of the Chencai migmatite, central Zhejiang Province, South China: constraints on the early Palaeozoic orogeny

Published online by Cambridge University Press:  17 April 2017

LONGMING LI*
Affiliation:
School of Resources and Environment, Hefei University of Technology, Hefei 230026, PR China
SHOUFA LIN
Affiliation:
School of Resources and Environment, Hefei University of Technology, Hefei 230026, PR China Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
JIANHUA LI
Affiliation:
Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, PR China
JIAN HE
Affiliation:
School of Resources and Environment, Hefei University of Technology, Hefei 230026, PR China
YANPENG GE
Affiliation:
School of Resources and Environment, Hefei University of Technology, Hefei 230026, PR China
*
Author for correspondence: Longming_li@hfut.edu.cn

Abstract

U–Pb ages and Hf isotope compositions of zircons from the Chencai complex in Zhejiang Province have been determined to provide constraints on mechanisms of migmatization and tectonic evolution related to the early Palaeozoic orogeny in the Cathaysia Block, South China. Zircons from leucosome samples of migmatites are characterized by nebulous overgrowths enclosing inherited cores or occur as newly formed grains with weak zoning. Five samples gave weighted mean ages ranging from 438±3 Ma to 432±4 Ma, which are interpreted as recording the time of anatexis of a regional tectono-thermal event. Their εHf(t) values range from −21.4 to −4.8 (with peak at −11), with corresponding TDM2 ages of 1.73–2.77 Ga (with peak at c. 1.9–2.3 Ga), suggesting that the protoliths formed by reworking of ancient crust evolved from Late Palaeoproterozoic – early Archaean crust–mantle differentiation. The migmatization was spatially and temporally associated with reported 460–435 Ma metamorphism with a clockwise pressure–temperature (PT) path and was most likely controlled by crustal thickening driven by the early Palaeozoic orogenesis. The TDM2 ages of the Chencai complex are consistent with those of the Wuyi–Yunkai structural belt in the Cathaysia Block, but distinct from those (with peak at 2.7–3.0 Ga) of the Badu complex which lacks early Palaeozoic tectono-thermal records. The data support the suggestion that a postulated geological entity, instead of the east domain (the Badu complex being its main part) of the Cathaysia Block, was probably involved in the early Palaeozoic orogeny.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfonso, M. S., Raúl, A. B. & Márcio, M. P. 2013. Petrogenesis of migmatites and leucogranites from Sierra de Molinos, Salta, Northwest Argentina: a petrologic and geochemical study. Lithos 177, 470–91.Google Scholar
Anderson, T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.Google Scholar
Andreoli, M. A, Hart, R. J, Ashwal, L. D. & Coetzee, H. 2006. Correlations between U, Th content and metamorphic grade in the Western Namaqualand belt, South Africa, with implication for radioactive heating of the crust. Journal of Petrology 47, 1095–118.Google Scholar
Black, L. P. & Culson, B. L. 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR Journal of Australian Geology & Geophysics 3, 227–32.Google Scholar
Blichert-Toft, J. & Albarede, F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148, 243–58.Google Scholar
Brown, M. 1973. The definition of metatexis, diatexis and migmatite. Proceedings of the Geologists’ Association 84, 371–82.Google Scholar
Brown, M. 2001. Orogeny, migmatites and leucogranites: a review. Proceedings of the Indian National Science Academy 110, 313–36.Google Scholar
Brown, M. 2007. Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences. Journal of the Geological Society 164 (4), 709–30.Google Scholar
Castiñeiras, P., Villaseca, C., Barbero, L. & Martín Romera, C. 2008. SHRIMP U-Pb zircon dating of anatexis in high-grade migmatite complexes of Central Spain: implications in the Hercynian evolution of Central Iberia. International Journal of Earth Sciences 97 (1), 3550.Google Scholar
Charvet, J. 2013. The Neoproterozoic–Early Paleozoic tectonic evolution of the South China Block: an overview. Journal of Asian Earth Sciences 74, 198209.Google Scholar
Charvet, J., Shu, L. S., Faure, M., Choulet, F., Wang, B., Lu, H. F. & Breton, N. L. 2010. Structural development of the Lower Paleozoic belt of South China: genesis of an intracontinental orogen. Journal of Asian Earth Sciences 39, 309–30.Google Scholar
Charvet, J., Shu, L. S., Shi, Y. S., Guo, L. Z. & Faure, M. 1996. The building of South China: collision of Yangzi and Cathaysia blocks, problems and tentative answers. Journal of Southeast Asian Earth Sciences 13, 223–35.Google Scholar
Chen, X. Y, Tong, L. X., Zhang, C. L, Zhu, Q. B. & Li, Y. N. 2015. Retrograde garnet amphibolite from eclogite of the Zhejiang Longyou area: new evidence of the Caledonian orogenic event in the Cathaysia block. Science Bulletin 60 (13), 1207–17 (in Chinese with English summary).Google Scholar
Clark, C., Fitzsimons, I. C., Healy, D. & Harley, S. L. 2011. How does the continental crust get really hot? Elements 7, 235–40.Google Scholar
Cottle, J. M., Larson, K. P. & Kellett, D. A. 2015. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen. Journal of Structural Geology 78, 119–33.Google Scholar
Dewey, J. F., Robb, L. & van Schalkwyk, L. 2006. Did bushmanland extensionally unroof Namaqualand? Precambrian Research 150, 173–82.Google Scholar
Dong, S. W., Zhang, Y. Q., Gao, R., Su, J. B., Liu, M. & Li, J. H. 2015. A possible buried Paleoproterozoic collisional orogen beneath central South China: evidence from seismic-reflection profiling. Precambrian Research 264, 110.Google Scholar
Faure, M., Shu, L. S., Wang, B., Charvet, J., Choulet, F. & Monié, P. 2009. Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova 21, 360–8.Google Scholar
Gao, L. Z., Ding, X. Z. & Liu, Y. X. 2014. SHRIMP zircon U-Pb dating of Neoproterozoic Chencai Complex in Jiangshan-Shaoxing fault zone and its implication. Geological Bulletin of China 33 (5), 641–8 (in Chinese with English summary).Google Scholar
Gao, S., Jie, Y., Lian, Z., Li, M., Hu, Z. C., Guo, J. L., Yuan, H. L., Gong, H. J., Xiao, G. Q. & Wei, J. Q. 2011. Age and growth of the Archean Kongling terrain, south China, with emphasis on 3.3 Ga granitoid gneisses. American Journal of Science 311, 153–82.Google Scholar
Gerbi, C., Culshaw, N. G. & Marsh, J. H. 2010. Magnitude of weakening during crustal-scale shear zone development. Journal of Structural Geology 32, 107–17.Google Scholar
Groppo, C., Rolfo, F. & Mosca, P. 2013. The cordierite-bearing anatectic rocks of the higher Himalayan crystallines (eastern Nepal): low-pressure anatexis, melt productivity, melt loss and the preservation of cordierite. Journal of Metamorphic Geology 31 (2), 187204.Google Scholar
Guernina, S. & Sawyer, E. W. 2003. Large-scale melt-depletion in granulite terranes: an example from the Archaean Ashuanipi subprovince of Quebec. Journal of Metamorphic Geology 21, 181201.Google Scholar
Guo, L. Z., Shi, Y. S. & Lu, H. F. 1989. The pre-Devonian tectonic patterns and evolution of South China. Journal of Southeast Asian Earth Sciences 3 (1–4), 8793.Google Scholar
Hinchey, A. M. & Carr, S. D. 2006. The S-type Ladybird leucogranite suite of southeastern British Columbia: geochemical and isotopic evidence for a genetic link with migmatite formation in the North American basement gneisses of the Monashee complex. Lithos 90 (3–4), 223–48.Google Scholar
Huang, J. Q. 1977. The basic outline of China tectonics. Acta Geologica Sinica 52, 117–35.Google Scholar
Johannes, W., Ehlers, C., Kriegsman, L. M. & Mengel, K. 2003. The link between migmatites and S-type granites in the Turku area, southern Finland. Lithos 68 (3–4), 6990.Google Scholar
Kong, X. S., Bao, C. M. & Gu, M. G. 1994. Discussion for main geological features and tectonic evolution of Chencai group in Zhuji district, Zhejiang Province. Geology of Zhejiang 10, 1529 (in Chinese with English summary).Google Scholar
Kong, X., Li, Z., Feng, C., Gu, G. & Ma, J. 1995. The Precambrian Geology of Chencai Region in Zhejiang Province. Beijing: Precambrian Geological Publishing House, 136 pp.Google Scholar
Li, J. H., Dong, S. W., Zhang, Y. Q., Zhao, G. C., Johnston, S. T., Cui, J. J. & Xin, Y. 2016. New insights into Phanerozoic tectonics of South China. Part 1: polyphase deformation in the Jiuling and Lianyunshan domains of the central Jiangnan Orogen. Journal of Geophysical Research: Solid Earth 121, 3048–80.Google Scholar
Li, L. M., Lin, S. F., Davis, D. W., Xing, G. F., Xiao, W. J. & Yin, C. Q. 2014. Geochronology and geochemistry of igneous rocks from the Kongling terrain: implications for Mesoarchean to Paleoproterozoic crustal evolution of Yangtze Block. Precambrian Research 255 (1), 3047.Google Scholar
Li, L. M., Lin, S. F., Xing, G. F., Davis, D. W., Davis, W. J., Xiao, W. J. & Yin, C. Q. 2013a. Geochemistry and tectonic implications of late Mesoproterozoic alkaline bimodal volcanic rocks from the Tieshajie Group in the southeastern Yangtze Block, South China. Precambrian Research 230, 179–92.Google Scholar
Li, L. M., Lin, S. F., Xing, G. F., Davis, D. W., Davis, W. J., Xiao, W. J. & Yin, C. Q. 2013b. Geochronology and geochemistry of volcanic rocks from the Shaojiwa Formation and Xingzi Group, Lushan area, SE China: implications for Neoproterozoic back-arc basin in the Yangtze Block. Precambrian Research 238, 117.Google Scholar
Li, L. M., Lin, S. F., Xing, G. F., Davis, D. W., Jiang, Y., Davis, W. J. & Zhang, Y. J. 2016. Ca. 830 Ma back-arc type volcanic rocks in the eastern part of the Jiangnan Orogen: implications for the Neoproterozoic tectonic evolution of South China Block. Precambrian Research 275, 209–24.Google Scholar
Li, L. M., Sun, M., Wang, Y. J., Xing, G. F., Zhao, G. C., Cai, K. D. & Zhang, Y. Z. 2011a. Geochronology and geochemistry of Palaeoproterozoic gneissic granites and clinopyroxenite enclaves from NW Fujian, SE China: implications for the crustal evolution of the Cathaysia Block. Journal of Asia Earth Sciences 41, 204–12.Google Scholar
Li, L. M., Sun, M., Wang, Y. J., Xing, G. F., Zhao, G. C., He, Y. H., He, K. J. & Zhang, A. M. 2011b. U-Pb and Hf isotopic study of detrital zircons from the metasedimentary rocks in central Jiangxi Province, South China: implications for the Neoproterozoic tectonic evolution of South China Block. Journal of Asia Earth Sciences 41, 4455.Google Scholar
Li, L. M., Sun, M., Wang, Y. J., Xing, G. F., Zhao, G. C., Lin, S. F., Xia, X. P., Chan, L. S. & Zhang, F. F. & Wong, J. 2011c. U-Pb and Hf isotopic study of zircons from migmatised amphibolites in the Cathaysia Block: implications for the early Paleozoic peak tectonothermal event in Southeastern China. Gondwana Research 19, 191201.Google Scholar
Li, W. X., Li, X. H., Li, Z. X. & Lou, F. S. 2008. Obduction-type granites within the NE Jiangxi Ophiolite: implications for the final amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research 13, 288301.Google Scholar
Li, X. H., Li, Z. X., Ge, W. C., Zhou, H. W., Li, W. X., Liu, Y. & Wingate, M. T. D. 2003. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca825 Ma? Precambrian Research 122, 4583.Google Scholar
Li, X. H., Liu, Y., Li, Q. L., Guo, C. H. & Chamberlain, K. R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry, Geophysics, Geosystems 10 (4), Q04010. doi: 10.1029/2009GC002400.Google Scholar
Li, X. H., Long, W. G., Li, Q. L., Liu, Y., Zheng, Y. F., Yang, Y. H., Chamberlain, K. R., Wan, D. F., Guo, C. H., Wang, X. C. & Tao, H. 2010a. Penglai zircon megacryst: a potential new working reference for microbeam analysis of Hf-O isotopes and U-Pb age. Geostandards and Geoanalytical Research 34, 117–34.Google Scholar
Li, X., Tang, G., Gong, B., Yang, Y., Hou, K., Hu, Z., Li, Q., Liu, Y. & Li, W. 2013b. Qinghu zircon: a working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chinese Science Bulletin 58, 4647–54.Google Scholar
Li, Z. X., Li, X. H., Wartho, J. A., Clark, C., Li, W. X., Zhang, C. L. & Bao, C. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure-temperature conditions. Geological Society of America Bulletin 122, 772–93.Google Scholar
Li, Z. X., Wartho, J. A., Occhipinti, S., Zhang, C. L., Li, X. H., Wang, J. & Bao, C. M. 2007. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: new mica 40Ar/39Ar dating and SHRIMP U–Pb detrital zircon provenance constraints. Precambrian Research 159, 7994.Google Scholar
Lin, S. F., Brem, A. G., van Staal, C. R., Davis, D. W., McNicoll, V. J. & Pehrsson, S. 2013. The Corner Brook Lake block in the Newfoundland Appalachians: a suspect terrane along the Laurentian margin and evidence for large-scale orogen-parallel motion. Geological Society of America Bulletin 125, 1618–32.Google Scholar
Lin, S. F., Xing, G. F., Ying, C. Q., Li, L. M., Davis, D., Davis, B., Chen, G. H., Jiang, Y. & Chen, Z. H. 2015. An Appalachian-style multi-terrane accretion/collision model for the assembly of South China. Abstract 34518 presented at 2015 Joint Assembly, AGU–GAC–MAC–CGU, Montreal, Canada, 3–7 May.Google Scholar
Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J. & Chen, H. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin 55 (15), 1535–46.Google Scholar
Liu, R., Zhou, H. W., Zhang, L., Zhong, Z. Q., Zeng, W., Xiang, H., Jin, S., Lu, X. Q. & Li, C. Z. 2010a. Zircon U-Pb ages and Hf isotope compositions of the Mayuan migmatite complex, NW Fujian Province, Southeast China: constraints on the timing and nature of a regional tectonothermal event associated with the Caledonian orogeny. Lithos 119, 163–80.Google Scholar
Ludwig, K. R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley, CA: Berkeley Geochronology Center.Google Scholar
Ma, R. S. 2006. New thought about the tectonic evolution of the South China: with discussion on several problems of the Cathyasia old land. Geological Journal of China Universities 12 (4), 448–56 (in Chinese with English summary).Google Scholar
McLaren, S., Sandiford, M. & Hand, M. 1999. High radiogenic heat-producing granites and metamorphism: an example from the western Mount Isa inlier, Australia. Geology 27 (8), 679–82.Google Scholar
McLaren, S., Sandiford, M., Powell, R., Neumann, N. & Woodhead, J. 2006. Palaeozoic intraplate crustal anatexis in the Mount Painter province, South Australia: timing, thermal budgets and the role of crustal heat production. Journal of Petrology 47, 2281–302.Google Scholar
Molnar, P., Houseman, G. A. & Conrad, C. P. 1998. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophysical Journal International 133, 568–84.Google Scholar
Montero, P., Bea, F., Zinger, T. F., Scarrow, J. H., Molina, J. F. & Whitehouse, M. 2004. 55 million years of continuous anatexis in Central Iberia: single-zircon dating of the Pena Negra Complex. Journal of the Geological Society of London 161 (2), 255–63.Google Scholar
Oliver, N. H. S., Nemchin, A. A., Bodorkos, S. & Kinny, P. D. 1999. Relationships between zircon Th-Pb-U SHRIMP isotope patterns and migmatite type in the Halls Creek orogen, Western Australia. Journal of Petrology 40, 1553–75.Google Scholar
Qiu, Y. M., Gao, S., McNaughton, N. J., Groves, D. I. & Ling, W. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28, 1114.3.2+Ga+continental+crust+in+the+Yangtze+craton+of+south+China+and+its+implications+for+Archean+crustal+evolution+and+Phanerozoic+tectonics.+Geology+28,+11–14.>Google Scholar
Sawyer, E. W. 2008. Atlas of Migmatites. Ontario: NRC Research Press, 371 pp. The Canadian Mineralogist, Special Publication 9.Google Scholar
Sawyer, E. W. 2010. Migmatites formed by water-fluxed partial melting of a leucogranodiorite protolith: microstructures in the residual rocks and source of the fluid. Lithos 116, 273–86.Google Scholar
Scherer, E., Munker, C. & Mezger, K. 2001. Calibration of the lutetium-hafnium clock. Science 293 (5530), 683–7.Google Scholar
Shu, L. S. 2006. Predevonian tectonic evolution of South China: from Cathaysian Block to Caledonian period folded orogenic belt. Geological Journal of China Universities 12 (4), 418–31 (in Chinese with English summary).Google Scholar
Shu, L. S., Jahn, B. M., Charvet, J., Santosh, M., Wang, B., Xu, X. S. & Jiang, S. Y. 2014. Early Paleozoic depositional environment and interpolate tectono-magmatism in the Cathaysia Block (South China): evidence from stratigraphic, structural, geochemical and geochronological investigations. American Journal of Science 314, 154–86.Google Scholar
Shu, L. S., Lu, H. F., Jia, D., Charvet, J. & Faure, M. 1999. Study of the 40Ar/39Ar isotopic age for the early Paleozoic tectonothermal event in the Wuyishan region, South China. Journal of Nanjing University 35, 668–74 (in Chinese with English summary).Google Scholar
Shu, L. S., Yu, J. H., Jia, D., Wang, B., Shen, W. Z. & Zhang, Y. Q. 2008. Early Paleozoic orogenic belt in the eastern segment of South China. Geological Bulletin of China 27, 1581–93 (in Chinese with English summary).Google Scholar
Shu, X. J., Wang, X. L., Sun, T., Chen, W. F. & Shen, W. Z. 2013. Crustal formation in the Nanling Range, South China Block: Hf isotope evidence of zircons from Phanerozoic granitoids. Journal of Asian Earth Sciences 74, 210–24.Google Scholar
Shui, T. 1987. Tectonic framework of basement in Southeast China continental area. Science in China (Series B) 4, 414–22 (in Chinese).Google Scholar
Shui, T., Xu, B. T. & Liang, R. H. 1986. The Shaoxing-Jiangshan Pangea opposite zone. Chinese Science Bulletin 31 (6), 444–8 (in Chinese).Google Scholar
Slama, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plesovice zircon: a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.Google Scholar
Streule, M. J., Searle, M. P., Waters, D. J. & Horstwood, M. S. A. 2010. Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics 29 (5), 633–50.Google Scholar
Stacey, J. S., Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207221.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Voshage, H., Hofmann, A., Mazzucchelli, M., Rivalenti, G., Sinigoi, S., Raczek, I. & Demarchi, G. 1990. Isotopic evidence from the Ivrea zone for a hybrid lower crust formed by magmatic underplating. Nature 347, 731–36.Google Scholar
Wang, C. Z., Xing, G. F., Chen, R., Hong, W. T., Zhu, Q. B., Zhao, X. L. & Jiang, Y. 2015. Zircon geochronology of the metamorphic rocks of Chencai Group in Shenzhou area, Zhejiang Province: the response of the Jiangshan-Shaoxing suture zone to the Indosinian orogenic event. Geology in China 42 (6), 1700–14 (in Chinese with English summary).Google Scholar
Wang, D., Zheng, J. P., Ma, Q., Griffin, W. L., Zhao, H. & Wong, J. 2013. Early Paleozoic crustal anatexis in the intraplate Wuyi–Yunkai orogen, South China. Lithos 175–176, 124–45.Google Scholar
Wang, J. & Li, Z. X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research 122 (1–4), 141–58.Google Scholar
Wang, S. J., Li, S. G., Chen, L. J., He, Y. S., An, S. C. & Shen, J. 2013. Geochronology and geochemistry of leucosomes in the North Dabie Terrane, East China: implication for post-UHPM crustal melting during exhumation. Contributions to Mineralogy and Petrology 165, 1009–29.Google Scholar
Wang, X. L., Zhou, J. C., Griffin, W. L., Wang, R. C., Qiu, J. S., O'Reilly, S. Y., Xu, X. S., Liu, X. M. & Zhang, G. L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Research 159, 117–31.Google Scholar
Wang, X. L., Zhou, J. C., Griffin, W. L., Zhao, G. C., Yu, J. H., Qiu, J. S., Zhang, Y. J. & Xing, G. F. 2014. Geochemical zonation across a Neoproterozoic orogenic belt: isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research 242, 154–71.Google Scholar
Wang, Y. J., Fan, W. M., Zhao, G. C., Ji, S. C. & Peng, T. P. 2007. Zircon U-Pb geochronology of gneissic rocks in the Yunkai Massif and its implications on the Caledonian event in the South China Block. Gondwana Research 12, 404–16.Google Scholar
Wang, Y. J., Wu, C. M., Zhang, A. M., Fan, W. M., Zhang, Y. H., Zhang, Y. Z., Peng, T. P. & Yin, C. Q. 2012. Kwangsian and Indosinian reworking of the eastern South China Block: constraints on zircon U-Pb geochronology and metamorphism of amphibolite and granulite. Lithos 127, 239–60.Google Scholar
Wang, Y. J., Zhang, A. M., Cawood, P. A., Zhang, Y. Z., Fan, W. M. & Zhang, G. W. 2013a. Geochronological and Nd-Hf-Os geochemical fingerprinting of an early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia. Precambrian Research 231, 343–71.Google Scholar
Wang, Y. J., Zhang, A. M., Fan, W. M., Zhang, G. W., Zhang, F. F. & Zhang, Y. Z. 2011. Kwangsian crustal anatexis within the eastern South China Block: geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos 127, 239–60.Google Scholar
Wang, Y. J., Zhang, A. M., Fan, W. M., Zhang, Y. H. & Zhang, Y. Z. 2013b. Origin of paleosubduction modified mantle for Silurian gabbro in the Cathaysia Block: geochronological and geochemical evidence. Lithos 160–161, 3754.Google Scholar
Whittington, A. & Treloar, P. 2002. Crustal anatexis and its relation to the exhumation of collisional orogenic belts, with particular reference to the Himalaya. Mineralogical Magazine 66, 5391.Google Scholar
Williams, I. S., Buick, I. S. & Cartwright, I. 1996. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. Journal of Metamorphic Geology 14 (1), 2947.Google Scholar
Xia, Y., Xu, X. S. & Zhu, K. Y. 2012. Paleoproterozoic S- and A-type granites in southwestern Zhejiang: magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement. Precambrian Research 216–219, 177207.Google Scholar
Xiang, H., Zhang, L., Zhou, H., Zhong, Z., Zeng, W., Liu, R. & Jin, S. 2008. U–Pb zircon geochronology and Hf isotope study of metamorphosed basic–ultrabasic rocks from metamorphic basement in southwestern Zhejiang: the response of the Cathaysia Block to Indosinian orogenic event. Science in China (Series D): Earth Sciences 51, 788800 (in Chinese).Google Scholar
Xu, B. T. 1987. Isotopic geochronology of Paleo-basement metamorphic rocks in southeastern Zhejiang Province. Geological Review 33 (5), 468–74 (in Chinese with English summary).Google Scholar
Xu, X. S., O'Reilly, S. Y., Griffin, W. L., Wang, X. L., Pearson, N. J. & He, Z. Y. 2007. The crust of Cathaysia: age, assembly and reworking of two terranes. Precambrian Research 158, 5178.Google Scholar
Yao, J. L, Shu, L. S. & Santosh, M. 2014. Palaeozoic metamorphism of the Neoproterozoic basement in NE Cathaysia: zircon U-Pb ages, Hf isotope and whole rock geochemistry from the Chencai Group. Journal of the Geological Society 171 (2), 281–97.Google Scholar
Yi, L. W., Ma, C. Q., Wang, L. X., Lai, Z. X., Li, X. Y., Yang, Y. N., Wu, F. & Hu, Y. R. 2014. Discovery of Late Ordovician subvolcanic rocks in South China: existence of subduction–related dacite from Early Paleozoic? Earth Science. Journal of Geosciences, 39 (6), 637653. (in Chinese with English abstract)Google Scholar
Yu, J. H., O'Reilly, S. Y., Wang, L. J., Griffin, W. L., Zhou, M. F., Zhang, M. & Shu, L. S. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research 181, 97114.Google Scholar
Yu, J. H., O'Reilly, S. Y., Zhou, M. F., Griffin, W. L. & Wang, L. J. 2012. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China: implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambrian Research 222–223, 424–49.Google Scholar
Yu, J. H. & Shu, L. S. 2016. Is the garnet amphibolite in the Longyou a retrograded eclogite? Science Bulletin 61 (6), 556–60 (in Chinese with English summary).Google Scholar
Yu, J. H., Wang, L. J., Griffin, W. L., O'Reilly, S. Y., Zhang, M., Li, C. Z. & Shu, L. S. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research 174, 347–63.Google Scholar
Yu, J. H., Zhou, X. M. & O'Reilly, S. Y. 2005. Formation history and protolith characteristics of granulite facies metamorphic rock in Central Cathaysia deduced from U-Pb and Lu-Hf isotopic studies of single zircon grains. Chinese Science Bulletin 50 (18), 2080–9.Google Scholar
Yu, J. H., Zhou, X. M. & Zhao, L. 2003. Discovery and implications of granulite facies metamorphic rocks in the eastern Nanling, China. Acta Petrologica Sinica 19 (3), 461–7 (in Chinese with English summary).Google Scholar
Yuan, H. L., Gao, S., Dai, M. N., Zong, C. L., Günther, D., Fontaine, H. G., Liu, X. M. & Di Wu, C. R. 2008. Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP–MS. Chemical Geology 247 (1–2), 100–18.Google Scholar
Zhang, C., Holtz, F., Koepke, J., Berndt, J. & Ma, C. Q. 2014a. Decompressional anatexis in the migmatite core complex of northern Dabie orogen, eastern China: petrological evidence and Ti-in-quartz thermobarometry. Lithos 202–203, 227–36.Google Scholar
Zhang, C. L., Santosh, M., Zhu, Q. B., Chen, X. Y. & Huang, W. C. 2014b. The Gondwana connect of South China: evidence from monazite and zircon geochronology in the Cathaysia Block. Gondwana Research 28 (3), 1137–51.Google Scholar
Zhang, F. F., Wang, Y. J., Fan, W. M., Zhang, A. M. & Zhang, Y. Z. 2012. Geochronological and geochemical constraints on petrogenesis of the Middle Paleozoic (Kwangsian) massive granites in the eastern South China Block. Lithos 150, 118208.Google Scholar
Zhang, Q., Jiang, Y. H., Wang, G. C., Liu, Z., Ni, C. Y. & Qing, L. 2015. Origin of Silurian gabbros and I-type granites in central Fujian, SE China: implications for the evolution of the early Paleozoic orogen of South China. Lithos 216–217, 285–97.Google Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research 151, 265–88.Google Scholar
Zhang, Z. M., Xiang, H., Dong, X., Li, W. C., Ding, H. X., Gou, Z. B. & Tian, Z. L. 2016. Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region, east-central Himalaya. Gondwana Research 41, published online 18 November 2016. doi: 10.1016/j.gr.2015.03.002.Google Scholar
Zhao, G. C. 2015. Jiangnan orogen in South China: developing from divergent double subduction. Gondwana Research 27 (3), 1173–80.Google Scholar
Zhao, G. C. & Cawood, P. A. 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: new evidence for Neoproterozoic collisional-related assembly of the South China craton. American Journal of Science 299, 309–39.Google Scholar
Zhao, G. C. & Cawood, P. A. 2012. Precambrian geology of China. Precambrian Research 222–223, 1354.Google Scholar
Zhao, G. C. & Sun, D. Y. 1994. The studies on metamorphic stages and metamorphic PTD path of Chencai Group, Southwestern Zhejiang Province. Journal of Changchun Univerisity of Earth Sciences 24 (3), 246–53.Google Scholar
Zhao, G. C., Sun, D. Y. & He, T. X. 1994. Discussion on characteristics of structural deformations and the ages of deformations about Chencai group. Geology of Zhejiang 10 (1), 3846 (in Chinese with English summary).Google Scholar
Zhao, L., Zhai, M. G., Zhou, X. W., Santosh, M. & Ma, X. D., 2015b. Geochronology and geochemistry of a suite of mafic rocks in Chencai area, South China: implications for petrogenesis and tectonic setting. Lithos 236–237, 226244.Google Scholar
Zhao, J. H., Zhou, M. F., Yan, D. P., Zheng, J. P. & Li, J. W. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology 39, 299302.Google Scholar
Zhao, L., Zhou, X. W., Zhai, M. G., Santosh, M. & Geng, Y. S. 2015a. Zircon U–Th–Pb–Hf isotopes of the basement rocks in northeastern Cathaysia block, South China: implications for Phanerozoic multiple metamorphic reworking of a Paleoproterozoic terrane. Gondwana Research 28, 246–61.Google Scholar
Zhao, L., Zhou, X., Zhai, M., Santosh, M., Ma, X., Shan, H. & Cui, X. 2014. Paleoproterozoic tectonic transition from collision to extension in the eastern Cathaysia Block, South China: evidence from geochemistry, zircon U–Pb geochronology and Nd–Hf isotopes of a granite-charnockite suite in southwestern Zhejiang. Lithos 184–187, 259–80.Google Scholar
Zheng, Y. F., Xiao, W. J. & Zhao, G. C. 2013. Introduction to tectonics of China. Gondwana Research 23, 1189–206.Google Scholar