Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T00:45:36.214Z Has data issue: false hasContentIssue false

Weak and intermittent anoxia during the mid-Tournaisian (Mississippian) anoxic event in the Montagne Noire, France

Published online by Cambridge University Press:  14 February 2023

Michał Rakociński*
Affiliation:
Faculty of Natural Sciences, University of Silesia in Katowice, Institute of Earth Sciences, Będzińska 60, Sosnowiec 41-200, Poland
Daria Książak
Affiliation:
Faculty of Natural Sciences, University of Silesia in Katowice, Institute of Earth Sciences, Będzińska 60, Sosnowiec 41-200, Poland
Agnieszka Pisarzowska
Affiliation:
Faculty of Natural Sciences, University of Silesia in Katowice, Institute of Earth Sciences, Będzińska 60, Sosnowiec 41-200, Poland
Michał Zatoń
Affiliation:
Faculty of Natural Sciences, University of Silesia in Katowice, Institute of Earth Sciences, Będzińska 60, Sosnowiec 41-200, Poland
Markus Aretz
Affiliation:
Géosciences Environnement Toulouse, Université de Toulouse, CNRS, IRD, UPS, 14 avenue E. Belin, F-31400 Toulouse, France
*
Author for correspondence: Michał Rakociński, Email: michal.rakocinski@us.edu.pl

Abstract

The mid-Tournaisian black radiolarian cherts of the Lydiennes Formation are exposed in deep-shelf successions of the Puech de la Suque and Col des Tribes sections of the Mont Peyroux Nappe area in the Montagne Noire, southern France. This interval represents the mid-Tournaisian anoxic event that is also termed the Lower Alum Shale Event. This event is associated with a global marine transgression that was characterized by increased productivity and drastic facies changes from pelagic carbonate sedimentation to the widespread deposition of black organic-rich siliceous shales and radiolarites in many parts of the world. In the present study, high-resolution inorganic geochemistry and framboidal pyrite analyses were employed to decipher changes in depositional conditions during the mid-Tournaisian anoxic event in the Montagne Noire. The results show that the total organic carbon contents of sediments associated with the Lower Alum Shale Event vary from 0.09 to 1.9 wt %. These low to moderate total organic carbon contents, high U/Th, low Corg/P and intermediate V/Cr ratios, enrichment in redox-sensitive trace elements, such as U, Mo and V, as well as varying sizes of pyrite framboids, indicate periodic dysoxic to anoxic bottom-water conditions during deposition of the studied sediments. Anomalous Hg spikes (>500 ppb) are also reported in the mid-Tournaisian deep-water marine succession of the Montagne Noire in the present study, which confirm a possible influence of increased regional volcanic activity during this environmental turnover.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acquafredda, P, Lorenzoni, S and Lorenzoni, EZ (1991) The Devonian and Carboniferous volcanism of the Peloritan Mountains (Sicily) and the evolution of Palaeozoic basins in the Calabrian-Peloritan arc. Geological Journal 26, 145–61.CrossRefGoogle Scholar
Acquafredda, P, Lorenzoni, S and Lorenzoni, EZ (1994) Palaeozoic sequences and evolution of the Calabrian-Peloritan Arc (Southern Italy). Terra Nova 6, 582–94.CrossRefGoogle Scholar
Alexandre, P, Chalot-Prat, F, Saintot, A, Wijbrans, J, Stephenson, R, Wilson, M, Kitchka, A and Stovba, S (2004) The 40Ar/39Ar dating of magmatic activity in the Donbas Fold Belt and the Scythian Platform (Eastern European Craton). Tectonics 23, TC5002. doi: 10.1029/2003TC001582.CrossRefGoogle Scholar
Algeo, TJ and Ingall, E (2007) Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2 . Palaeogeography, Palaeoclimatology, Palaeoecology 256, 130–55.CrossRefGoogle Scholar
Algeo, TJ and Liu, J (2020) A re-assessment of elemental proxies for paleoredox analysis. Chemical Geology 540, 119549. doi: 10.1016/j.chemgeo.2020.119549.CrossRefGoogle Scholar
Allison, PA, Wignall, PB and Brett, CE (1995) Palaeo-oxygenation: effects and recognition. In Marine Palaeoenvironmental Analysis from Fossils (eds Bosence, DWJ and Allison, PA), pp. 97112. Geological Society of London, Special Publication no. 83.Google Scholar
Arboit, F, Chew, D, Visoná, D, Massironi, M, Sciascia, F, Benedetti, G and Rodani, S (2008) The geodynamic evolution of the Italian South Alpine basement from the Ediacaran to the Carboniferous: was the South Alpine terrane part of the peri-Gondwana arc-forming terranes? Gondwana Research 65, 1730.CrossRefGoogle Scholar
Aretz, M (2016) The Kulm facies of the Montagne Noire (Mississippian, southern France). Geologica Belgica 19, 6980.CrossRefGoogle Scholar
Bábek, O, Kumpan, T, Kalvoda, J and Grygar, TM (2016) Devonian/Carboniferous boundary glacioeustatic fluctuations in a platform-to-basin direction: a geochemical approach of sequence stratigraphy in pelagic settings. Sedimentary Geology 337, 8199.CrossRefGoogle Scholar
Barrie, CT, Amelin, C and Pascual, E (2002) U–Pb geochronology of VMS mineralization in the Iberian Pyrite Belt. Mineralium Deposita 37, 684703.CrossRefGoogle Scholar
Becker, RT (1993a) Anoxia, eustatic changes, and Upper Devonian to Lowermost Carboniferous global ammonoid diversity. In The Ammonoidea: Environment, Ecology, and Evolutionary Change (ed. House, MR), pp. 115–64. Systematics Association Special Volume 47. Oxford: Clarendon Press.Google Scholar
Becker, RT (1993b) Analysis of ammonoid palaeobiogeography in relation to the global Hangenberg (terminal Devonian) and Lower Alum Shale (Middle Tournaisian) events. Annales de la Société géologique de Belgique 115, 459–73.Google Scholar
Becker, RT, Kaiser, SI and Aboussalam, ZS (2006) The Lower Alum Shale Event (Middle Tournaisian) in Morocco – facies and faunal changes. Kölner Forum für Geologie und Paläontologie 15, 78.Google Scholar
Becker, RT, Kaiser, SI and Aretz, M (2016) Review of chrono-, litho- and biostratigraphy across the global Hangenberg Crisis and Devonian–Carboniferous Boundary. In Devonian Climate, Sea Level and Evolutionary Events (eds Becker, RT, Königshof, P and Brett, CE), pp. 355–86. Geological Society of London, Special Publication no. 423.Google Scholar
Bennett, WW and Canfield, DE (2020) Redox-sensitive trace metals as paleoredox proxies: a review and analysis of data from modern sediments. Earth-Science Reviews 204, 103175. doi: 10.1016/j.earscirev.2020.103175.CrossRefGoogle Scholar
Blakey, R (2012) Paleogeography of Europe Mississippian ca. 350 Ma; Global Paleogeography and Tectonics in Deep Time Series. Deep Time Maps™ Paleogeography. Phoenix AZ: Colorado Plateau Geosystems Inc. https://deeptimemaps.com/europe/ Google Scholar
Bock, B, McLennan, SM and Hanson, GN (1998) Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Sedimentology 45, 635–55.CrossRefGoogle Scholar
Bond, DPG and Wignall, PB (2010) Pyrite framboid study of marine Permian-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin 122, 1265–79.CrossRefGoogle Scholar
Bond, D, Wignall, PB and Racki, G (2004) Extent and duration of marine anoxia during the Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine 141, 173–93.CrossRefGoogle Scholar
Bond, D and Zatoń, M (2003) Gamma-ray spectrometry across the Upper Devonian basin succession at Kowala in the Holy Cross Mountains (Poland). Acta Geologica Polonica 53, 93–9.Google Scholar
Borrego, AG, López García, A and Merino-Tomé, O (2018) Petrographic and geochemical characterization of organic-rich Mississippian black shales in the north of Spain: Vegamián Formation, Cantabrian Zone. International Journal of Coal Geology 190, 126–45.CrossRefGoogle Scholar
Brett, CA, Dick, VB and Baird, GC (1991) Comparative taphonomy and paleoecology of Middle Devonian dark gray and black shale facies from western New York. In Dynamic Stratigraphy and Depositional Environments of the Hamilton Group (Middle Devonian) in New York State, Part II (eds Landing, E and Brett, CE), pp. 536. New York State Museum Bulletin 469.Google Scholar
Bryan, SE, Allen, CM, Holcombe, RJ and Fielding, CR (2004) U–Pb zircon geochronology of Late Devonian to Early Carboniferous extension-related silicic volcanism in the northern New England Fold Belt. Australian Journal of Earth Sciences 51, 645–64.CrossRefGoogle Scholar
Buggisch, W, Joachimski, MM, Sevastopulo, G and Morrow, JR (2008) Mississippian δ13Ccarb and conodont apatite δ18O records – their relation to the Late Palaeozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 268, 273–92.CrossRefGoogle Scholar
Burda, J, Gawęda, A and Klötzli, U (2013) Geochronology and petrogenesis of granitoid rocks from the Goryczkowa Unit, Tatra Mountains (central Western Carpathians). Geologia Carpathica 64, 419–35.CrossRefGoogle Scholar
Burda, J and Klötzli, U (2007) LA-MC-ICP-MS U–Pb zircon geochronology of the Goryczkowa type granite – Tatra Mts., Poland. Mineralogia Polonica Special Papers 31, 8992.Google Scholar
Calvert, SE and Pedersen, TF (2007) Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. Developments in Marine Geology 1, 567644.CrossRefGoogle Scholar
Canfield, DE (1994) Factors influencing organic carbon preservation in marine sediments. Chemical Geology 114, 315–29.CrossRefGoogle ScholarPubMed
Casier, JG, Lethiers, F and Préat, A (2001) Ostracods and rock facies associated with the Devonian–Carboniferous boundary series in the Puech de la Suque section, Montagne Noire, France. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique Sciences de la Terre 71, 3152.Google Scholar
Chen, B, Chen, J, Qie, W, Huang, P, He, T, Joachimski, MM, Regelous, M, Pogge von Strandmann, PAE, Liu, J, Wang, X, Montañez, IP and Algeo, TJ (2021) Was climatic cooling during the earliest Carboniferous driven by expansion of seed plants? Earth and Planetary Science Letters 565, 116953. doi: 10.1016/j.epsl.2021.116953.CrossRefGoogle Scholar
Cheng, K, Elrick, M and Romaniello, SJ (2020) Early Mississippian ocean anoxia triggered organic carbon burial and late Paleozoic cooling: evidence from uranium isotopes recorded in marine limestone. Geology 48, 363–7.CrossRefGoogle Scholar
Claoué-Long, JC, Jones, JP and Roberts, J (1992) The age of the Devonian–Carboniferous boundary. Annales de la Société géologique de Belgique 115, 531–49.Google Scholar
Corradini, C, Pondrelli, M, Schönlaub, HP and Suttner, TJ (2017) The Palaeozoic of the Carnic Alps: an overview. In International Conodont Symposium 4, Valencia, 25–30 June 2017. Berichte des Institutes für Erdwissenschaften der Karl-Franzens-Universität Graz 23, 203–11.Google Scholar
Czarnocki, J (1989) Klimenie Gór Świętokrzyskich. Prace Państwowego Instytutu Geologicznego 127, 191.Google Scholar
Dunning, GR, Barr, SM, Giles, PS, McGregor, DC, Pe-Piper, G and Piper, DJW (2002a) Chronology of Devonian to early Carboniferous rifting and igneous activity in southern Magdalen Basin based on U–Pb (zircon) dating. Canadian Journal of Earth Sciences 39, 1219–37.CrossRefGoogle Scholar
Dunning, GR, Díez Montes, A, Matas, J, Martin Parra, LM, Almarza, J and Donaire, M (2002b) Geocronología U/Pb del volcanismo ácido y granitoides de la Faja Pirítica Ibérica (Zona Surportuguesa). Geogaceta 32, 127–30.Google Scholar
Eckelmann, K, Nesbor, H-D, Königshof, P, Linnemann, U, Hofmann, M, Lange, J-M and Sagawe, A (2014) Plate interactions of Laurussia and Gondwana during the formation of Pangaea — constraints from U–Pb LA–SF–ICP–MS detrital zircon ages of Devonian and Early Carboniferous siliciclastics of the Rhenohercynian zone, Central European Variscides. Gondwana Research 25, 1484–500.CrossRefGoogle Scholar
Edwards, BA, Kushner, DS, Outridge, PM and Wang, F (2021) Fifty years of volcanic mercury emission research: knowledge gaps and future directions. Science of The Total Environment 757, 143800. doi: 10.1016/j.scitotenv.2020.143800.CrossRefGoogle ScholarPubMed
Faure, M and Ferrière, J (2022) Reconstructing the Variscan Terranes in the Alpine basement: facts and arguments for an Alpidic Orocline. Geosciences 12, 65. doi: 10.3390/geosciences12020065.CrossRefGoogle Scholar
Feist, R (1985) Devonian stratigraphy of the southeastern Montagne Noire (France). Courier Forschungsinstitut Senckenberg 75, 331–52.Google Scholar
Feist, R, Cornée, J-J, Corradini, C, Hartenfels, S, Aretz, M and Girard, C (2021) The Devonian–Carboniferous boundary in the stratotype area (SE Montagne Noire, France). Palaeobiodiversity and Palaeoenvironments 101, 295311.CrossRefGoogle Scholar
Flajs, G and Feist, R (1988) Index conodonts, trilobites and environment of the Devonian–Carboniferous boundary Beds at La Serre (Montagne Noire, France). Courier Forschungsinstitut Senckenberg 100, 53107.Google Scholar
Franke, W, Cocks, LRM and Torsvik, TH (2017) The Palaeozoic Variscan oceans revisited. Gondwana Research 48, 257–84.CrossRefGoogle Scholar
Gamkrelidze, I, Shengelia, D, Chichinadze, G, Lee, Y-H, Okrostsvaridze, A, Beridze, G and Vardanashvili, K (2020) U–Pb LA–ICP–MS dating of zoned zircons from the Greater Caucasus pre-Alpine crystalline basement: evidence for Cadomian to Late Variscan evolution. Geologia Carpathica 71, 249–63.CrossRefGoogle Scholar
Gawęda, A, Burda, J, Klötzli, U, Golonka, J and Szopa, K (2016) Episodic construction of the Tatra granitoid intrusion (Central Western Carpathians, Poland/Slovakia): consequences for the geodynamics of Variscan collision and Rheic Ocean closure. International Journal of Earth Sciences 105, 1153–74.CrossRefGoogle Scholar
Gibling, MR, Culshaw, N, Pascucci, V, Waldron, JWF and Rygel, MC (2019) The Maritimes Basin of Atlantic Canada: basin creation and destruction during the Paleozoic assembly of Pangea. In The Sedimentary Basins of the United States and Canada (Second Edition) (ed. Miall, AD), pp. 267314. Amsterdam: Elsevier.CrossRefGoogle Scholar
Gibling, MR, Culshaw, N, Rygel, MC and Pascucci, V (2008) The Maritimes basin of Atlantic Canada: basin creation and destruction in the collisional zone of Pangea. In The Sedimentary Basins of the World Volume 5 (ed. Miall, AD), pp. 211–43. Amsterdam: Elsevier.Google Scholar
Girard, C (1994) Conodont biofacies and event stratigraphy across the D-C boundary in the stratotype area (Montagne Noire, France). Courier Forschungsinstitut Senckenberg 168, 299309.Google Scholar
Girard, C (1996) Réponse des communautés de conodontes aux perturbations eustatiques les événements fini-Dévoniens dans la Montagne Noire France. Revue de Micropaléontologie 394, 261–70.CrossRefGoogle Scholar
Girard, C, Cornée, J-J, Corradini, C, Fravalo, A and Feist, R (2014) Palaeoenvironmental changes at Col des Tribes (Montagne Noire, France), a reference section for the Famennian of north Gondwana-related areas. Geological Magazine 151, 864–84.CrossRefGoogle Scholar
Girard, C, Cornée, J-J, Joachimski, MM, Charruault, A-L, Dufour, A-B and Renaud, S (2020) Paleogeographic differences in temperature, water depth and conodont biofacies during the Late Devonian. Palaeogeography, Palaeoclimatology, Palaeoecology 549, 108852. doi: 10.1016/j.palaeo.2018.06.046.CrossRefGoogle Scholar
Göncüoğlu, CM, Türkmenoğlu, AG, Bozkaya, Ö, Ünlüce-Yücel, Ö, Okuyucu, C and Yilmaz, İÖ (2016) Geological features and geochemical characteristics of Late Devonian–Early Carboniferous K-bentonites from northwestern Turkey. Clay Minerals 51, 539–62.CrossRefGoogle Scholar
Grasby, SE, Them, TR, Chen, Z, Yin, RS and Ardakani, OH (2019) Mercury as a proxy for volcanic emissions in the geologic record. Earth-Science Reviews 196, 102880. doi: 10.1016/j.earscirev.2019.102880.CrossRefGoogle Scholar
Hammarlund, EU, Dahl, TW, Harper, DAT, Bond, DPG, Nielsen, AT, Bjerrum, CJ, Schovsbo, NH, Schönlaub, HP, Zalasiewicz, JA and Canfield, DE (2012) A sulfidic driver for the end-Ordovician mass extinction. Earth and Planetary Science Letters 331–332, 128–39.CrossRefGoogle Scholar
Huang, Y, Chen, Z-Q, Wignall, PB and Zhao, L (2017) Latest Permian to Middle Triassic redox condition variations in ramp setting, South China: pyrite framboid evidence. Geological Society of America Bulletin 129, 229–43.CrossRefGoogle Scholar
Jenkyns, HC (2010) Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11, Q03004. doi: 10.1029/2009GC002788.CrossRefGoogle Scholar
Jones, B and Manning, DA (1994) Comparison of geochemical indicates used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111, 111–29.CrossRefGoogle Scholar
Jones, MT, Percival, LME, Stokke, EW, Frieling, J, Mather, TA, Riber, L, Schubert, BA, Schultz, B, Tegner, C, Planke, S and Svensen, HH (2019) Mercury anomalies across the Palaeocene–Eocene thermal maximum. Climate of the Past 15, 217–36.CrossRefGoogle Scholar
Kaiser, SI, Aretz, M and Becker, RT (2015) The global Hangenberg Crisis (Devonian–Carboniferous transition): review of a first-order mass extinction. In Devonian Climate, Sea Level and Evolutionary Events (eds Becker, RT, Königshof, P and Brett, CE), pp. 387437. Geological Society of London, Special Publication no. 423. doi: 10.1144/SP423.9 Google Scholar
Kaiser, SI, Becker, RT, Steuber, T and Aboussalam, SZ (2011) Climate-controlled mass extinctions, facies, and sea-level changes around the Devonian–Carboniferous boundary in the eastern Anti-Atlas (SE Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology 310, 340–64.CrossRefGoogle Scholar
Kaiser, SI, Steuber, T and Becker, RT (2008) Environmental change during the late Famennian and early Tournaisian (Late Devonian–Early Carboniferous) – implications from stable isotopes and conodont biofacies in southern Europe. Geological Journal 43, 241–60.CrossRefGoogle Scholar
Kazmierczak, J, Kremer, B and Racki, G (2012) Late Devonian marine anoxia challenged by benthic cyanobacterial mats. Geobiology 10, 371–83.CrossRefGoogle ScholarPubMed
Königshof, P, Nesbor, H-D and Flick, H (2010) Volcanism and reef development in the Devonian: a case study from the Lahn syncline, Rheinisches Schiefergebirge (Germany). Gondwana Research 17, 264–80.CrossRefGoogle Scholar
Korn, D and Feist, R (2007) Early Carboniferous ammonoid faunas and stratigraphy of the Montagne Noire (France). Fossil Record 10, 99124.CrossRefGoogle Scholar
Krzemińska, E, Wiszniewska, J and Williams, IS (2006) Wczesnokarboński wiek intruzji platformowych w podłożu krystalicznym NE Polski. Przegląd Geologiczny 54, 1093–8.Google Scholar
Kuhnt, W, Holburn, A and Moullade, M (2011) Transient global cooling at the onset of early Aptian oceanic anoxic event (OAE) 1a. Geology 39, 323–6.CrossRefGoogle Scholar
Kumpan, T, Bábek, O, Kalvoda, J, Frýda, J and Matys Grygar, T (2014) A high-resolution, multiproxy stratigraphic analysis of the Devonian–Carboniferous boundary sections in the Moravian Karst (Czech Republic) and a correlation with the Carnic Alps (Austria). Geological Magazine 151, 201–15.CrossRefGoogle Scholar
Lardeaux, JM, Schulmann, K, Faure, M, Janoušek, V, Lexa, O, Skrzypek, E, Edel, JB and Stípska, P (2014) The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. In The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust (eds Schulmann, K, Martínez Catalán, JR, Lardeaux, JM, Janoušek, V and Oggiano, G), pp. 744. Geological Society of London, Special Publication no. 405.Google Scholar
Li, J, Song, H, Tian, L, Bond, DPG, Song, H, Du, Y, Zhang, C, Chu, D, Wignall, PB and Tong, J (2022) Dynamic ocean redox conditions during the end-Triassic mass extinction: evidence from pyrite framboids. Global and Planetary Changes 218, 103981. doi: 10.1016/j.gloplacha.2022.103981.CrossRefGoogle Scholar
Lim, D, Kim, H, Kim, J, Jeong, D and Kim, D (2020) Mercury proxy for hydrothermal and submarine volcanic activities in the sediment cores of Central Indian Ridge. Marine Pollution Bulletin 159, 111513. doi: 10.1016/j.marpolbul.2020.111513.CrossRefGoogle ScholarPubMed
Liu, J, Algeo, TJ, Qie, W and Saltzman, MR (2019) Intensified oceanic circulation during Early Carboniferous cooling events: evidence from carbon and nitrogen isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 531, 108962. doi: 10.1016/j.palaeo.2018.10.021.CrossRefGoogle Scholar
Lu, J, Wang, Y, Yang, M, Shao, L and Hilton, J (2021) Records of volcanism and organic carbon isotopic composition (δ13Corg) linked to changes in atmospheric pCO2 and climate during the Pennsylvanian icehouse interval. Chemical Geology 570, 120168. doi: 10.1016/j.chemgeo.2021.120168.CrossRefGoogle Scholar
Malec, J (2014) The Devonian/Carboniferous boundary in the Holy Cross Mountains (Poland). Geological Quarterly 58, 217–34.CrossRefGoogle Scholar
Martinez, A, Boyer, DL, Droser, ML, Barrie, C and Love, GD (2019) A stable and productive marine microbial community was sustained through the end-Devonian Hangenberg Crisis within the Cleveland Shale of the Appalachian Basin, United States. Geobiology 17, 2742.CrossRefGoogle ScholarPubMed
Marynowski, L, Filipiak, P and Zatoń, M (2010) Geochemical and palynological study of the Upper Famennian Dasberg event horizon from the Holy Cross Mountains (central Poland). Geological Magazine 147, 527–50.CrossRefGoogle Scholar
Marynowski, L, Kurkiewicz, S, Rakociński, M and Simoneit, BRT (2011) Effects of weathering on organic matter: I. Changes in molecular composition of extractable organic compounds caused by paleoweathering of a Lower Carboniferous (Tournaisian) marine black shale. Chemical Geology 285, 144–56.CrossRefGoogle Scholar
Marynowski, L, Pisarzowska, A, Rakociński, M, Derkowski, A, Środoń, J, Szaniawski, R and Cohen, A (2017) Influence of palaeoweathering on trace metal concentrations and environmental proxies in black shales. Palaeogeography, Palaeoclimatology, Palaeoecology 472, 177–91.CrossRefGoogle Scholar
Marynowski, L, Zatoń, M, Rakociński, M, Filipiak, P, Kurkiewicz, S and Pearce, TJ (2012) Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record. Palaeogeography, Palaeoclimatology, Palaeoecology 346/347, 6686.CrossRefGoogle Scholar
März, C, Poulton, SW, Beckmann, B, Küster, K, Wagner, T and Kasten, S (2008) Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochimica et Cosmochimica Acta 72, 3703–17.CrossRefGoogle Scholar
McKenzie, RN, Horton, BK, Loomis, SE, Stockli, DF, Planavsky, NJ and Lee, C-TA (2016) Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–7.CrossRefGoogle ScholarPubMed
Menor-Salván, C, Tornos, F, Fernández-Remolar, D and Amils, R (2010) Association between catastrophic paleovegetation changes during Devonian–Carboniferous boundary and the formation of giant massive sulfide deposits. Earth and Planetary Science Letters 299, 398408.CrossRefGoogle Scholar
Merriman, RJ, Evans, JA and Leveridge, BE (2000) Devonian and Carboniferous volcanic rocks associated with the passive margin sequences of SW England; some geochemical perspectives. Geoscience in South-West England 10, 7785.Google Scholar
Meyer, KM and Kump, LR (2008) Oceanic euxinia in Earth history: causes and consequences. Annual Review of Earth and Planetary Sciences 36, 251–88.CrossRefGoogle Scholar
Motuza, G, Šliaupa, S and Timmerman, MJ (2015) Geochemistry and 40Ar/39Ar age of Early Carboniferous dolerite sills in the southern Baltic Sea. Estonian Journal of Earth Sciences 64, 233–48.CrossRefGoogle Scholar
Mouro, LD, Rakociński, M, Marynowski, L, Pisarzowska, A, Musabelliu, S, Zatoń, M, Carvalho, MA, Fernandes, ACS and Waichel, BL (2017) Benthic anoxia, intermittent photic zone euxinia and elevated productivity during deposition of the Lower Permian, post-glacial fossiliferous black shales of the Paraná Basin, Brazil. Global and Planetary Change 158, 155–72.CrossRefGoogle Scholar
Murphy, JB, Gutierrez-Alonso, G, Nance, RD, Fernandez-Suarez, J, Keppeie, JD, Quesada, C, Strachan, RA and Dostal, J (2006) Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34, 325–8.CrossRefGoogle Scholar
Nesbor, HD (2004) Paläozoischer Intraplattenvulkanismus im östlichen Rheinischen Schiefergebirge – Magmenentwicklung und zeitlicher Ablauf. Geologisches Jahrbuch Hessen 131, 145–82.Google Scholar
Pe-Piper, G and Piper, DJW (1998) Geochemical evolution of Devonian–Carboniferous igneous rocks of the Magdalen basin, Eastern Canada: Pb and Nd isotope evidence for mantle and lower crustal sources. Canadian Journal of Earth Sciences 35, 201–21.CrossRefGoogle Scholar
Percival, LME, Ruhl, M, Hesselbo, SP, Jenkyns, HC, Mather, TA and Whiteside, JH (2017) Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences 114, 7929–34.CrossRefGoogle ScholarPubMed
Pisarzowska, A, Rakociński, M, Marynowski, L, Szczerba, M, Thoby, M, Paszkowski, M, Perri, MC, Spalletta, C, Schönlaub, H-P, Kowalik, N and Gereke, M (2020) Large environmental disturbances caused by magmatic activity during the Late Devonian Hangenberg Crisis. Global and Planetary Change 190, 103155. doi: 10.1016/j.gloplacha.2020.103155.CrossRefGoogle Scholar
Pracht, M (2000) Controls on magmatism in the Munster Basin, SW Ireland. In New Perspectives on the OM Red Sandstone (eds Friend, PF and Williams, BPJ), pp. 303–17. Geological Society of London, Special Publication no. 180.Google Scholar
Pracht, M and Batchelor, RA (1998/9) A geochemical study of late Devonian and early Carboniferous tufts from the South Munster Basin, Ireland. Irish Journal of Earth Sciences 17, 2538.Google Scholar
Pracht, M and Kinnaird, JA (1997) Carboniferous subvolcanic activity on the Beara Peninsula, SW Ireland. Geological Journal 32, 297312.3.0.CO;2-X>CrossRefGoogle Scholar
Pyle, DM and Mather, TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment 37, 5115–24.CrossRefGoogle Scholar
Racka, M, Marynowski, L, Filipiak, P, Sobstel, M, Pisarzowska, A and Bond, DPG (2010) Anoxic Annulata Events in the Late Famennian of the Holy Cross Mountains (Southern Poland): geochemical and palaeontological record. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 549–75.CrossRefGoogle Scholar
Racki, G (2020) A volcanic scenario for the Frasnian–Famennian major biotic crisis and other Late Devonian global changes: more answers than questions? Global and Planetary Change 189, 103174. doi: 10.1016/j.gloplacha.2020.103174.CrossRefGoogle Scholar
Racki, G, Baliński, A, Wrona, R, Małkowski, K, Drygant, D and Szaniawski, H (2012) Faunal dynamics across the Silurian–Devonian positive isotope excursions (δ13C, δ18O) in Podolia, Ukraine: comparative analysis of the Ireviken and Klonk events. Acta Palaeontologica Polonica 57, 795832.CrossRefGoogle Scholar
Racki, G, Marynowski, L and Rakociński, M (2018a) Anomalous Upper Devonian mercury enrichments: comparison of Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) and Atomic Absorption Spectrometry (AAS) analytical data. Geological Quarterly 62, 487–95.CrossRefGoogle Scholar
Racki, G, Piechota, A, Bond, D and Wignall, PB (2004) Geochemical and ecological aspects of lower Frasnian pyrite-ammonoid level at Kostomłoty (Holy Cross Mountains, Poland). Geological Quarterly 48, 267–82.Google Scholar
Racki, G, Rakociński, M, Marynowski, L and Wignall, PB (2018b) Mercury enrichments and the Frasnian–Famennian biotic crisis: a volcanic trigger proved? Geology 46, 543–6.CrossRefGoogle Scholar
Rakociński, M, Książak, D, Pisarzowska, A and Marynowski, L (2022) Mercury evidence of intense submarine volcanism and hydrothermal activity during a mid-Tournaisian anoxic event in the Carnic Alps. Gondwana Research 109, 225–38.CrossRefGoogle Scholar
Rakociński, M, Marynowski, L, Zatoń, M and Filipiak, P (2021a) The mid-Tournaisian (Early Carboniferous) anoxic event in the Laurussian shelf basin (Poland): an integrative approach. Palaeogeography, Palaeoclimatology, Palaeoecology 566, 110236. doi: 10.1016/j.palaeo.2021.110236.CrossRefGoogle Scholar
Rakociński, M, Pisarzowska, A, Corradini, C, Narkiewicz, K, Dubicka, Z and Abdiyev, N (2021b) Mercury spikes as evidence of extended arc-volcanism around the Devonian–Carboniferous boundary in the South Tian Shan (southern Uzbekistan). Scientific Reports 11, 5708, doi: 10.1038/s41598-021-85043-6.CrossRefGoogle Scholar
Rakociński, M, Pisarzowska, A, Janiszewska, K and Szrek, P (2016) Depositional conditions during the Lower Kellwasser Event (Late Frasnian) in the deep-shelf Łysogóry Basin of the Holy Cross Mountains Poland. Lethaia 49, 571–90.CrossRefGoogle Scholar
Rakociński, M, Zatoń, M, Marynowski, L, Gedl, P and Lehman, J (2018) Redox conditions, productivity, and volcanic input during deposition of uppermost Jurassic and Lower Cretaceous organic-rich siltstones in Spitsbergen, Norway. Cretaceous Research 89, 126–47.CrossRefGoogle Scholar
Rimmer, SE (2004) Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA). Chemical Geology 206, 373–91.CrossRefGoogle Scholar
Rimmer, SM, Thompson, JA, Goodnight, SA and Robl, TL (2004) Multiple controls on the preservation of organic matter in Devonian – Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 215, 125–54.CrossRefGoogle Scholar
Saltzman, MR, González, LA and Lohmann, KC (2000) Earliest cooling step triggered by the Antler orogeny? Geology 28, 347–50.2.0.CO;2>CrossRefGoogle Scholar
Sandberg, CA, Ziegler, W, Leuteritz, K and Brill, SM (1978) Phylogeny, speciation and zonation of Siphonodella (Conodonta, Upper Devonian and Lower Carboniferous). Newsletters on Stratigraphy 7, 102–20.CrossRefGoogle Scholar
Sanei, H, Grasby, SE and Beauchamp, B (2012) Latest Permian mercury anomalies. Geology 40, 63–6.CrossRefGoogle Scholar
Schieber, J (2009) Discovery of agglutinated benthic foraminifera in Devonian black shales and their relevance for the redox state of ancient seas. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 292300.CrossRefGoogle Scholar
Shen, J, Chen, J, Algeo, TJ, Feng, Q, Yu, J, Xu, Y-G, Xu, G, Lei, Y, Planavsky, NJ and Xie, S (2021) Mercury fluxes record regional volcanism in the South China craton prior to the end-Permian mass extinction. Geology 49, 452–6.CrossRefGoogle Scholar
Shen, J, Feng, Q, Algeo, TJ, Liu, J, Zhou, C, Wei, W, Liu, J, Them, TR II, Gill, BC and Chen, J (2020) Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy. Earth and Planetary Science Letters 541, 116333. doi: 10.1016/j.epsl.2020.116333.CrossRefGoogle Scholar
Sial, AN, Chen, J, Lacerda, LD, Frei, R, Tewari, VC, Pandit, MK, Gaucher, C, Ferreira, VP, Cirilli, S, Peralta, S, Korte, C, Barbosa, JA and Pereira, NS (2016) Mercury enrichment and Hg isotopes in Cretaceous–Paleogene boundary successions: links to volcanism and palaeoenvironmental impacts. Cretaceous Research 66, 6081.CrossRefGoogle Scholar
Siegmund, H, Trappe, J and Oschmann, W (2002) Sequence stratigraphic and genetic aspects of the Tournaisian “Liegender Alaunschiefer” and adjacent beds. International Journal of Earth Science 91, 934–49.CrossRefGoogle Scholar
Spalletta, C, Corradini, C, Feist, R, Korn, D, Kumpan, T, Perri, MC, Pondrelli, M and Venturini, C (2021) The Devonian–Carboniferous boundary in the Carnic Alps (Austria and Italy). Palaeobiodiversity and Palaeoenvironments 101, 487505.CrossRefGoogle Scholar
Stampfli, GM, Hochard, C, Vérard, C, Wilhem, C and von Raumer, JF (2013) The formation of Pangea. Tectonophysics 593, 119.CrossRefGoogle Scholar
Stampfli, GM, von Raumer, J and Borel, G (2002) The Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. In Variscan–Appalachian Dynamics: The Building of the Late Paleozoic Basement (eds Martinez Catalán, JR, Hatcher, RD Jr, Arenas, R and Diaz Garcia, F), pp. 263–80. Geological Society of America Special Paper no. 364.Google Scholar
Stampfli, GM, von Raumer, J and Wilhem, C (2011) The distribution of Gondwana-derived terranes in the early Palaeozoic. In The Ordovician of the World (eds Gutierrez-Marco, JC, Rabano, I and García-Bellido, D), pp. 567–74. Cuadernos del Museo Geominero no. 14. Madrid: Instituto Geologico y Minero de Espana.Google Scholar
Taylor, SR and McLennan, SM (1985) The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 312 pp.Google Scholar
Tessalina, SG, Bourdon, B, Maslennikov, VV, Orgeval, JJ, Birck, JL, Gannoun, A, Capmas, F and Allègre, CJ (2008) Osmium isotope distribution within the Palaeozoic Alexandrinka seafloor hydrothermal system in the Southern Urals, Russia. Ore Geology Reviews 33, 7080.CrossRefGoogle Scholar
Tessalina, SG, Jourdan, F and Belogub, EV (2017) Significance of Late Devonian – Lower Carboniferous ages of hydrothermal sulphides and sericites from the Urals Volcanic-Hosted Massive Sulphide deposits. Ore Geology Reviews 85, 131–9.CrossRefGoogle Scholar
Tribovillard, N, Algeo, TJ, Baudin, F and Riboulleau, A (2012) Analysis of marine environmental conditions based on molybdenum–uranium covariation – applications to Mesozoic paleoceanography. Chemical Geology 324–325, 4658.CrossRefGoogle Scholar
Tribovillard, N, Algeo, TJ, Lyons, T and Riboulleau, A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232, 1232.CrossRefGoogle Scholar
Türkmenoğlu, AG, Bozkaya, Ö, Göncüoğlu, CM, Ünlüce, Ö, Yilmaz, İÖ and Okuyucu, C (2015) Clay mineralogy, chemistry, and diagenesis of Late Devonian K-bentonite occurrences in northwestern Turkey. Turkish Journal of Earth Sciences 24, 209–29.CrossRefGoogle Scholar
von Raumer, JF, Bussy, F, Schaltegger, U, Schulz, B and Stampfli, GM (2013) Pre-Mesozoic Alpine basements? Their place in the European Paleozoic framework. Geological Society of America Bulletin 125, 89108.CrossRefGoogle Scholar
von Raumer, JF and Stampfli, GM (2008) The birth of the Rheic Ocean – early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461, 920.CrossRefGoogle Scholar
Walliser, OH (1996) Global events in the Devonian and Carboniferous. In Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, OH), pp. 225–50. Berlin: Springer Verlag.CrossRefGoogle Scholar
Wedepohl, KH (1970) Geochemische Daten von sedimentären Karbonaten und Karbonatgesteinen in ihrem faziellen und petrogenetischen Aussagewert. Verhandlungen der geologischen Bundesanstalt 4, 692705.Google Scholar
Wiederer, U, Königschof, P, Feist, R, Franke, W and Doublier, MP (2002) Low grade metamorphism in the Montagne Noire (S–France): Conodont Alteration Index (CAI) in Paleozoic carbonates and implications for the exhumation metamorphic core complex. Schweizerische Mineralogische und Petrographische Mitteilung 82, 393407.Google Scholar
Wignall, PB (1993) Distinguishing between oxygen and substrate control in fossil benthic assemblages. Journal of the Geological Society, London 150, 193–6.CrossRefGoogle Scholar
Wignall, PB and Myers, KJ (1988) Interpreting benthic oxygen levels in mudrocks: a new approach. Geology 16, 452–5.2.3.CO;2>CrossRefGoogle Scholar
Wignall, PB and Newton, R (1998) Pyrite framboid diameter as a measure of oxygen-deficiency in ancient mudrocks. American Journal of Science 298, 537–52.CrossRefGoogle Scholar
Wildman, RA, Berner, RA, Petsch, ST, Bolton, EW, Eckert, JO, Mok, U and Evans, JB (2004) The weathering of sedimentary organic matter as a control on atmospheric O2: I. Analysis of black shale. American Journal of Sciences 304, 234–49.Google Scholar
Wilkin, RT, Barnes, HL and Brantley, SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta 60, 3897–912.CrossRefGoogle Scholar
Wiszniewska, J, Petecki, Z, Krzemińska, E, Grabarczyk, A and Demaiffe, D (2020) The Tajno ultramafic-alkaline-carbonatite massif, NE Poland: a review. Geophysics, petrology, geochronology and isotopic signature. Geological Quarterly 64, 402–21.Google Scholar
Yang, S, Hu, W, Wang, X, Jiang, B, Yao, S, Sun, F, Huang, Z and Zhu, F (2019) Duration, evolution, and implications of volcanic activity across the Ordovician–Silurian transition in the Lower Yangtze region, South China. Earth and Planetary Sciences Letters 518, 1325.CrossRefGoogle Scholar
Yao, L, Qie, W, Luo, G, Liu, J, Algeo, TJ, Bai, X, Yang, B and Wang, X (2015) The TICE event: perturbation of carbon–nitrogen cycles during the mid-Tournaisian (Early Carboniferous) greenhouse–icehouse transition. Chemical Geology 401, 114.CrossRefGoogle Scholar
Zhou, CM and Jiang, SY (2009) Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China, evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 279–86.CrossRefGoogle Scholar
Supplementary material: File

Rakociński et al. supplementary material

Rakociński et al. supplementary material

Download Rakociński et al. supplementary material(File)
File 5.7 MB