Skip to main content Accessibility help

Upper Jurassic travertine at El Macanudo, Argentine Patagonia: a fossil geothermal field modified by hydrothermal silicification and acid overprinting



The Deseado Massif hosts numerous Late Jurassic (150 Ma) fossil geothermal systems related to an extensive volcanic event developed in a diffuse extensional back-arc setting. Detailed mapping, petrography and mineralogical observations of El Macanudo outcrops verify that it represents a hot-spring-related travertine partially replaced by silica and delineated by six sedimentary facies. These are large concentric cones (F1), laminated vertical columnar structures (F2), porous layers (F3), shrubby and irregular lamination (F4), low-amplitude wavy bedding (F5) and mounds and breccias (F6). The Macanudo Norte Outcrop rocks constitute a silica-replaced travertine sequence, with development of large conical stromatolites in a deep pool or geothermally influenced shallow lacustrine environment, surrounded by a subaerial travertine apron terrace; whereas, the Macanudo Sur Outcrop is a subaerial travertine mound sequence. Structurally controlled vent areas occur in both northern (F1) and southern (F6) outcrops, mainly located along regional NNE- and ENE-trending faults. The other sedimentary units display a concentric distribution of travertine facies with respect to the interpreted vent areas. The El Macanudo palaeo-hot spring deposit is situated in an eroded Jurassic volcanic centre, and records a complex evolutionary-fluid history. The sediments archived three different Jurassic events, when large and long-lasting hydrothermal systems were active across the region. This relative temporal sequence was formed by: (1) travertine precipitation; (2) development of a silica cap, where early silicification was responsible for exceptional preservation of some stromatolitic fabrics; and (3) acid alteration, recorded by dissolution textures and clay formation, and caused by a palaeo-phreatic water-level drop.


Corresponding author

Author for correspondence:


Hide All
Cady, S. L. & Farmer, J. D. 1996. Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. In Evolution of Hydrothermal Ecosystems on Earth (and Mars?) (eds Bock, G. R. & Goode, G. A.), pp. 150–73. Proceedings of the Ciba Foundation Symposium 202. Chichester: J. Wiley.
Campbell, K. A., Guido, D. M., Gautret, P., Foucher, F., Ramboz, C. & Westall, F. 2015a. Geyserite in hot-spring siliceous sinter: window on Earth's hottest terrestrial paleoenvironment and its extreme life. Earth-Science Reviews 148, 4464.
Campbell, K. A., Lynne, B. Y., Handley, K., Jordan, S., Farmer, J., Guido, D., Turner, S. & Perry, R. 2015b. Tracing biosignature preservation of geothermally silicified microbial textures into the geological record. Astrobiology 15, 858–82.
Campbell, K. A., Sannazzaro, K., Rodgers, K. A., Herdianita, N. R. & Browne, P. R. L. 2001. Sedimentary facies and mineralogy of the late Pleistocene Umukuri silica sinter, Taupo Volcanic Zone, New Zealand. Journal of Sedimentary Research 71, 727–46.
Chafetz, H. S. & Folk, R. L. 1984. Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrography 54, 289316.
Chafetz, H. S. & Guidry, S. A. 1999. Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: bacterial vs. abiotic precipitation. Sedimentary Geology 126, 5774.
Channing, A., Zamuner, A., Edwards, D. & Guido, D. 2011. Equisetum thermale sp. nov. (Equisetales) from the Jurassic San Agustín hot spring deposit, Patagonia: anatomy, paleoecology and inferred paleoecophysiology. American Journal of Botany 98, 680–97.
Drake, B. D., Campbell, K. A., Rowland, J. V., Guido, D. M., Browne, P. R. L. & Rae, A. 2014. Evolution of a dynamic paleo-hydrothermal system at Mangatete, Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research 282, 1935.
Echeveste, H., Fernández, R., Bellieni, G., Tessone, M., Llambias, E., Schalamuk, I., Piccirillo, E. & De Min, A. 2001. Relaciones entre las Formaciones Bajo Pobre y Chon Aike (Jurásico medio a superior) en el área de Estancia El Fénix-Cerro Huemul, zona centro-occidental del Macizo del Deseado, provincia de Santa Cruz. Revista de la Asociación Geológica Argentina 56 (4), 548–58.
Echeveste, H., Fernández, R., Llambias, E., Tessone, M., Schalamuk, I., Bellieni, G., Piccirillo, E. & De Min, A. 1999. Ignimbritas tardías de alto grado en la Formación Chon Aike (Jurásico). Macizo del Deseado, Santa Cruz. Argentina. In XIV Congreso Geológico Argentino, Actas II, pp. 182–5.
Ellis, A. J. & Wilson, S. H. 1961. Hot spring areas with acid–sulphate–chloride waters. Nature 191, 696–8.
Farmer, J. D. 2000. Hydrothermal systems: doorways to early biosphere evolution. GSA Today 10, 19.
Feruglio, E. 1949. Descripción Geológica de la Patagonia. Dirección Nacional de Yacimientos Petrolíferos Fiscales, Buenos Aires, Tomo 1, pp. 17–19.
Fouke, B. W., Farmer, J. D., Des Marais, D. J., Pratt, L., Sturchio, N. C., Burns, P. C. & Discipulo, M. K. 2000. Depositional facies and aqueous-solid geochemistry of travertine depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.). Journal of Sedimentary Research 70, 565–85.
Fournier, R. O. 1985. The behaviour of silica in hydrothermal solutions. Reviews in Economic Geology 2, 4562.
Fournier, R. O. & Rowe, J. J. 1966. Estimation of underground temperatures from the silica content of water from hot springs and steam wells. American Journal of Science 264, 685–97.
García Massini, J., Channing, A., Guido, D. M. & Zamuner, A. B. 2012. First report of fungi and fungus-like organisms from Mesozoic hot springs. Palaios 27, 5562.
Giacosa, R., Zubia, M., Sánchez, M. & Allard, J. 2010. Meso-Cenozoic tectonics of the southern Patagonian foreland: structural evolution and implications for Au-Ag veins in the eastern Deseado region (Santa Cruz, Argentina). Journal of South American Earth Sciences 30, 134–50.
Gibert, R. O., Taberner, C., Sáez, A., Giralt, S., Alonso, R. N., Edwards, R. L. & Pueyo, J. J. 2009. Igneous origin of CO2 in ancient and recent hot-spring waters and travertines from the northern Argentinean Andes. Journal of Sedimentary Research 79, 554–67.
Guido, D. 2004. Subdivisión litofacial e interpretación del volcanismo jurásico (Grupo Bahía Laura) en el este del Macizo del Deseado, provincia de Santa Cruz. Revista de la Asociación Geológica Argentina 59 (4), 727–42.
Guido, D. M. & Campbell, K. A. 2009. Jurassic hot-spring activity in a fluvial setting at La Marciana, Patagonia, Argentina. Geological Magazine 146, 617–22.
Guido, D. M. & Campbell, K. A. 2011. Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): characteristics and controls on regional distribution. Journal of Volcanology and Geothermal Research 203, 3547.
Guido, D. M. & Campbell, K. A. 2012. Diverse subaerial and sublacustrine hot springs setting of the Cerro Negro epithermal (Jurassic, Deseado Massif), Patagonia, Argentina. Journal of Volcanology and Geothermal Research 229–230, 112.
Guido, D. M. & Campbell, K. A. 2014. A large and complete Jurassic geothermal field at Claudia, Deseado Massif, Santa Cruz, Argentina. Journal of Volcanology and Geothermal Research 275, 6170.
Guido, D. M., Channing, A., Campbell, K. A. & Zamuner, A. 2010. Jurassic geothermal landscapes and fossil ecosystems at San Agustín, Patagonia, Argentina. Journal of the Geological Society, London 167, 1120.
Guido, D., Delupí, R., López, R., de Barrio, R. & Schalamuk, I. 2002. Estromatolitos y mineralización epitermal en el área Marianas-Eureka, Macizo del Deseado, Santa Cruz. In XV Congreso Geológico Argentino, Calafate, Actas II, pp. 284–9.
Guido, D., Escayola, M., de Barrio, R., Schalamuk, I. & Franz, G. 2006. La Formación Bajo Pobre (Jurásico) en el este del Macizo del Deseado, Patagonia: vinculación con el Grupo Bahía Laura. Revista de la Asociación Geológica Argentina 61 (2), 187–96.
Guido, D. & Schalamuk, I. 2003. Genesis and exploration potential of epithermal deposits from the Deseado Massif, Argentinean Patagonia. In Mineral Exploration and Sustainable Development (eds Eliopoulos, D. et al.), pp. 489–92. Rotterdam: Millpress.
Guo, L. & Riding, R. 1994. Origin and diagenesis of Quaternary travertine shrub fabrics, Rapolano Terme, central Italy. Sedimentology 41, 499520.
Handley, K. & Campbell, K. A. 2011. Character, analysis and preservation of biogenicity in terrestrial siliceous stromatolites from geothermal settings. In Stromatolites: Interaction of Microbes with Sediments (eds Tewari, V. & Seckbach, J.), pp. 359–81. Cellular Origin, Life in Extreme Habitats and Astrobiology 18. Dordrecht: Springer.
Henley, R. W. & Ellis, A. J. 1983. Geothermal systems, ancient and modern: a geochemical review. Earth-Science Reviews 19, 150.
Herdianita, N. R., Browne, P. R. L., Rodgers, K. A. & Campbell, K. A. 2000. Mineralogical and textural changes accompanying ageing of silica sinter. Mineralium Deposita 35, 4862.
Hinman, N. W. & Lindstrom, R. F. 1996. Seasonal changes in silica deposition in hot spring systems. Chemical Geology 132, 237–46.
Jones, B. & Renaut, R. W. 2003a. Petrography and genesis of spicular and columnar geyserite from the Whakarewarewa and Orakeikorako geothermal areas, North Island, New Zealand. Canadian Journal of Earth Science 40, 1585–610.
Jones, B. & Renaut, R. W. 2003b. Hot spring and geyser sinters: the integrated product of precipitation, replacement, and deposition. Canadian Journal of Earth Science 40, 1549–69.
Jones, B. & Renaut, R. W. 2010. Calcareous spring deposits in continental settings. In Carbonates in Continental Settings: Facies, Environments & Processes (eds Alonso-Zarza, A. M. & Tanner, L. H.), pp. 177224. Developments in Sedimentology 61. Amsterdam: Elsevier.
Jones, B. & Renaut, R. W. 2011. Hot springs and geysers. In Encyclopedia of Geobiology (eds Reitner, J. & Thiel, V.), pp. 447–51. Heidelberg: Springer.
Jones, B. & Renaut, R. W. 2012. Facies architecture in depositional systems resulting from the interaction of acidic springs, alkaline springs, and acidic lakes: case study of Lake Roto-a-Tamaheke, Rotorua, New Zealand. Canadian Journal of Earth Science 49, 1217–50.
Jones, B., Renaut, R. W. & Owen, B. O. 2011. Life of a geyser discharge apron: evidence from Waikite Geyser, Whakarewarewa geothermal area, North Island, New Zealand. Sedimentary Geology 236, 7794.
Koban, C. G. & Schweigert, G. 1993. Microbial origin of travertine fabrics – two examples from Southern Germany (Pleistocene Stuttgart travertines and Miocene Riedöschingen travertine). Facies 29, 251–64.
Lynne, B. Y. 2012. Mapping vent to distal-apron hot spring paleo-flow pathways using siliceous sinter architecture. Geothermics 43, 324.
Lynne, B. Y. & Campbell, K. A. 2003. Diagenetic transformations (opal-A to quartz) of low and mid-temperature microbial textures in siliceous hot-spring deposits, Taupo Volcanic Zone, New Zealand. Canadian Journal of Earth Sciences 40, 1679–96.
Lynne, B. Y., Campbell, K. A., James, B. J., Browne, P. R. L. & Moore, J. 2007. Tracking crystallinity in siliceous hot-spring deposits. American Journal of Science 307, 612–41.
Lynne, B. Y., Campbell, K. A., Moore, J. N. & Browne, P. R. L. 2005. Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound, Roosevelt Hot Springs, Utah, U.S.A. Sedimentary Geology 179, 249–78.
Lynne, B. Y., Campbell, K. A., Moore, J. & Browne, P. R. L. 2008. Origin and evolution of the Steamboat Springs siliceous sinter deposit, Nevada, U.S.A. Sedimentary Geology 210, 111–31.
Lynne, B. Y., Campbell, K. A., Perry, R. S., Browne, P. R. L. & Moore, J. N. 2006. Acceleration of sinter diagenesis in an active fumarole, Taupo Volcanic Zone, New Zealand. Geology 34, 749–52.
Mykietiuk, K. & Lanfrancini, M. 2004. Depósitos Jurásicos de un lago geotermal en el Cerro Tornillo, Macizo del Deseado, Santa Cruz. In 7 Congreso de Mineralogía y Metalogenia, pp. 261–6.
Nicholson, K. 1993. Geothermal Fluids: Chemistry and Exploration Technique. Berlin: Springer.
Pankhurst, R. J., Leat, P. T., Sruoga, P., Rapela, C. W., Marquez, M., Storey, B. C. & Riley, T. R. 1998. The Chon Aike province of Patagonia and related rocks in West Antarctica: a silicic large igneous province. Journal of Volcanology and Geothermal Research 81, 113–36.
Pentecost, A. 1990. The formation of travertine shrubs: Mammoth Hot Springs, Wyoming. Geological Magazine 127, 159–68.
Pentecost, A. 1993. British travertines: a review. Proceedings of the Geologists’ Association 104, 2939.
Pentecost, A. 2005. Travertine. Berlin: Springer, 445 pp.
Renaut, R. W. & Jones, B. 2000. Microbial precipitates around continental hot springs and geysers. In Microbial Sediments (eds Riding, R. & Awramik, S. M.), pp. 187–95. Berlin: Springer.
Renaut, R. W. & Jones, B. 2011a. Hydrothermal environments, terrestrial. In Encyclopedia of Geobiology (eds Reitner, J. & Thiel, V.), pp. 467–79. Heidelberg: Springer.
Renaut, R. W. & Jones, B. 2011b. Sinter. In Encyclopedia of Geobiology (eds Reitner, J. & Thiel, V.), pp. 808–13. Heidelberg: Springer.
Renaut, R. W., Morley, C. K. & Jones, B. 2002. Fossil hot-spring travertine in the Turkana basin, northern Kenya: Structure, facies, and genesis. In Sedimentation in Continental Rifts (eds Renaut, R. W. & Ashley, G. M.), pp. 123–41. SEPM Special Publication no. 73.
Richardson, N. J. & Underhill, J. R. 2002. Controls on the structural architecture and sedimentary character of syn-rift sequences, North Falkland Basin, South Atlantic. Marine and Petroleum Geology 19, 417–43.
Rodgers, K. A., Browne, P. R. L., Buddle, T. F., Cook, K. L., Greatrex, R. A., Hampton, W. A., Herdianita, N. R., Holland, G. R., Lynne, B. Y., Martin, R., Newton, Z., Pastars, D., Sannazarro, K. L. & Teece, C. I. A. 2004. Silica phases in sinters and residues from geothermal fields of New Zealand. Earth-Science Reviews 66, 161.
Rosen, M. R., Arehart, G. B. & Lico, M. S. 2004. Exceptionally fast growth rate of <100-year-old tufa, Big Soda Lake, Nevada: implications for using tufa as a paleoclimate proxy. Geology 32, 409–12.
Rowland, J. V. & Simmons, S. F. 2012. Hydrologic, magmatic, and tectonic controls on hydrothermal flow, Taupo Volcanic Zone, New Zealand: implications for the formation of epithermal vein deposits. Economic Geology 107 (3), 427–57.
Schalamuk, I. B., Guido, D. M., de Barrio, R. E. & Fernandez, R. R. 1999. Hot spring structures from El Macanudo-El Mirasol area, Deseado Massif, Argentina. In Mineral Deposits: Processes to Processing (eds Stanley, C. J., et al.), pp. 577–80. Rotterdam: Balkema.
Schalamuk, I. B., Zubia, M., Genini, A. & Fernández, R. R. 1997. Jurassic epithermal Au-Ag deposits of Patagonia, Argentina. Ore Geology Reviews 12, 173–86.
Schinteie, R., Campbell, K. A. & Browne, P. R. L. 2007. Microfacies of stromatolitic sinter from acid–sulphate–chloride springs at Parariki Stream, Rotokawa geothermal field, New Zealand. Palaeontologia Electronica 10 (1), 133 (4A),
Sibson, R. H. 1987. Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology 15, 701–4.
Sillitoe, R. H. 2015. Epithermal paleosurfaces. Mineralium Deposita 50, 767–93.
Sturchio, N. C., Dunkley, P. N. & Smith, M. 1993. Climate-driven variations in the geothermal activity of the northern Kenya Rift Valley. Nature 362, 233–4.
Trewin, N. H. 1996. The Rhynie Chert: an early Devonian ecosystem preserved by hydrothermal activity. In Evolution of Hydrothermal Ecosystems on Earth (and Mars?) (eds Bock, G. R. & Goode, G. A.), pp. 131–49. Proceedings of the Ciba Foundation Symposium 202. Chichester: J. Wiley.
Trewin, N. H., Fayers, S. R. & Kelman, R. 2003. Subaqueous silicification of the contents of small ponds in an early Devonian hot spring complex, Rhynie, Scotland. Canadian Journal of Earth Science 40, 1697–712.
White, D. E. 1967. Some principles of geyser activity, mainly from Steamboat Springs, Nevada. American Journal of Science 265, 641–84.


Upper Jurassic travertine at El Macanudo, Argentine Patagonia: a fossil geothermal field modified by hydrothermal silicification and acid overprinting



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed