Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T18:32:46.261Z Has data issue: false hasContentIssue false

A new vauxiid sponge from the Kaili Biota (Cambrian Stage 5), Guizhou, South China

Published online by Cambridge University Press:  23 January 2017

XINGLIAN YANG*
Affiliation:
College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing 210008, China
YUANLONG ZHAO
Affiliation:
College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China
LOREN E. BABCOCK
Affiliation:
School of Earth Sciences, The Ohio State University, Columbus 43210, USA
JIN PENG
Affiliation:
College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China
*
Author for correspondence: yangxinglian2002@163.com

Abstract

The skeleton of a new vauxiid sponge (Order Verongida), Angulosuspongia sinensis gen. et sp. nov., described on the basis of material from calcareous mudstones of the Kaili Formation (Cambrian Stage 5), Jianhe area, Guizhou, South China, is composed of two layers of fused spicules outlining hexagonal or polygonal openings. These vauxiid remains are the first reported from outside Laurentia, and represent only the second genus attributed to the family. Its age is close to but still slightly older than the Burgess Shale Biota, and it appears to be a primitive relative of other members of the Vauxiidae. The morphological differences between Chinese and Laurentian vauxiid sponges may be a result of vicariance. These specimens not only extend the geographic distribution of vauxiids, but also help to fill a chronostratigraphical gap between North Greenland and North American material and provide additional evidence for understanding the evolutionary history of the Demospongiae.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergquist, P. R. 1978. Sponges. Berkeley: University of California Press, 268 pp.Google Scholar
Botting, J. P. 2007. Algae, receptaculitids and sponges. In Silurian Fossils of the Pentland Hills, Scotland (eds Clarkson, E. N. K., Harper, D. A. T., Taylor, C. M. & Anderson, L.), pp. 3649. Palaeontological Association Field Guides to Fossils 11.Google Scholar
Botting, J. P., Cárdenas, P. & Peel, J. S. 2015. A crown-group demosponge from the early Cambrian Sirius Passet Biota, North Greenland. Palaeontology 58, 3543.CrossRefGoogle Scholar
Botting, J. P., Muir, L. A. & Lin, J. P. 2013. Relationships of the Cambrian Protomonaxonida (Porifera). Palaeontologia Electronica 16, 123.Google Scholar
Botting, J. P. & Peel, J. S. 2016. Early Cambrian sponges of the Sirius Passet Biota, North Greenland. Papers in Palaeontology 2, 463–87.CrossRefGoogle Scholar
Cárdenas, P. & Rapp, H. T. 2015. Demosponges from the Northern Mid-Atlantic Ridge shed more light on the diversity and biogeography of North Atlantic deep-sea sponges. Journal of the Marine Biological Association of the United Kingdom 95, 1475–516.Google Scholar
de Laubenfels, M. W. 1955. Porifera. In Treatise on Invertebrate Paleontology, Part E, Archaeocyatha and Porifera (ed. Moore, R. C.), pp. E21E112. Boulder, Colorado: Geological Society of America and Lawrence, Kansas: University of Kansas Press.Google Scholar
Degnan, B. M., Adamska, M., Richards, G. S., Larroux, C., Leininger, S., Bergum, B., Calcino, A., Taylor, K., Nakanishi, N. & Degnan, S. M. 2015. Porifera . In Evolutionary Developmental Biology of Invertebrates. 1 Introduction, Non-Bilateria, Acoelomorpha, Xenoturbellida, Chaetognatha (ed. Wanninger, A.), pp. 65106. Vienna: Department of Integrative Zoology, University of Vienna Faculty of Life Sciences.Google Scholar
Ehrlich, H., Rigby, J. K., Botting, J. P., Tsurkan, M. V., Werner, C., Schwille, P., Petrášek, Z., Pisera, A., Simon, P., Sivkov, V. N., Vyalikh, D. V., Molodtsov, S. L., Kurek, D., Kammer, M., Hunoldt, S., Born, R., Stawski, D., Steinhof, A., Bazhenov, V. V. & Geisler, T. 2013. Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta . Scientific Reports 3, 3497. doi: 10.1038/srep03497.CrossRefGoogle ScholarPubMed
Erpenbeck, D. & Wörheide, G. 2007. On the molecular phylogeny of sponges (Porifera). In Linnaeus Tercentenary: Progress in Invertebrate Taxonomy, Zootaxa 1668 (eds Zhang, Z. Q. & Shear, W. A.), pp. 107–26. Auckland, New Zealand: Magnolia Press.Google Scholar
Finks, R. M. 1960. Late Paleozoic sponge faunas of the Texas region. The siliceous sponges. Bulletin of the American Museum of Natural History 120, 1160.Google Scholar
Gaines, R. R., Mering, J. A., Zhao, Y. L. & Peng, J. 2011. Stratigraphic and microfacies analysis of the Kaili Formation, a candidate GSSP for the Cambrian Series 2–Series 3 Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 311, 171–83.CrossRefGoogle Scholar
Kelly, M. 2007. The marine fauna of New Zealand: Porifera: lithistid Demospongiae (rock sponges). Niwa Biodiversity Memoirs 121, 198.Google Scholar
Kelly-Borges, M. & Pomponi, S. A. 1994. Phylogeny and classification of lithistid sponges (Porifera: Demospongiae): a preliminary assessment using ribosomal DNA sequence comparisons. Molecular Marine Biology and Biotechnology 3, 87103.Google ScholarPubMed
Larroux, C., Fahey, B., Liubicich, D., Hinman, V. F., Gauthier, M., Gongora, M., Green, K., Wörheide, G., Leys, S. P. & Degnan, B. M. 2006. Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evolution and Development 8, 150–73Google Scholar
Maldonado, M. 2009. Embryonic development of verongid demosponges supports the independent acquisition of sponging skeletons as an alternative to the siliceous skeleton of sponges. Biological Journal of the Linnean Society 97, 427–47.Google Scholar
McKerrow, W. S., Scotese, C. R. & Brasier, M. D. 1992. Early Cambrian continental reconstructions. Journal of the Geological Society, London 149, 599606.Google Scholar
Meert, J. G. & Lieberman, B. S. 2004. A palaeomagnetic and palaeobiogeographical perspective on latest Neoproterozoic and early Cambrian tectonic events. Journal of the Geological Society, London 161, 477–87.CrossRefGoogle Scholar
Peel, J. S. & Ineson, J. R. 2011. The Sirius Passet Lagerstätte (early Cambrian) of North Greenland. Palaeontographica Canadiana 31, 109–18.Google Scholar
Rigby, J. K. 1980. The new Middle Cambrian sponge Vauxia magna from the Spence Shale of northern Utah and taxonomic position of the Vauxiidae. Journal of Paleontology 54, 234–40.Google Scholar
Rigby, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian) British Columbia. Palaeontographica Canadiana Monograph 2, 1105.Google Scholar
Rigby, J. K. & Collins, D. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. ROM Contributions in Science 1, 1155.Google Scholar
Robison, R. A. 1991. Middle Cambrian biotic diversity: examples from four Utah lagerstätten. In The Early Evolution of Metazoa and the Significance of Problematic Taxa (eds Simonetta, A. & Conway Morris, S.), pp. 7798. Cambridge: Cambridge University Press.Google Scholar
Robison, R. A., Babcock, L. E. & Gunther, V. G. 2015. Exceptional Cambrian fossils from Utah: A Window into the Age of Trilobites. Utah Geological Survey Miscellaneous Publication 15–1.Google Scholar
Sollas, W. J. 1875. Sponges. In Encyclopaedia Britannica, 9th edition, p. 421.Google Scholar
Steiner, M., Mehl, D., Reitner, J. & Erdtmann, B. D. 1993. Oldest entirely preserved sponges and other fossils from the lowermost Cambrian and a new facies reconstruction of the Yangtze Platform (China). Berliner Geowissenschaften Abhandlungen E9, 293329.Google Scholar
Tai, T. S. & Deng, S. 2006. Fossils: The Key to the Past, Morphology of Early Life – 500 Million Years Ago. An Illustrated Booklet to the Burgess Shale-Type Deposits in Guizhou, South China. The Bureau of Science and Technology, Autonomous Prefecture of Miao and Tong Nationalities, Southeastern Guizhou Province, China, 36 pp.Google Scholar
Uriz, M. J. & Turon, X. 2012. Sponge ecology in the molecular era. Advances in Marine Biology 61, 345410.Google Scholar
Walcott, C. D. 1920. Cambrian geology and paleontology. IV—Middle Cambrian Spongiae. Smithsonian Miscellaneous Collections 67, 261364.Google Scholar
Winder, P. L., Pomponi, S. A. & Wright, A. E. 2011. Natural products from the Lithistida: a review of the literature since 2000. Marine Drugs 9, 2643–82.Google Scholar
Wood, R. 1999. Reef Evolution. Oxford: Oxford University Press, 414 pp.Google Scholar
Wörheide, G. 1998. The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific. Micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. Facies 38, 188 Google Scholar
Wörheide, G., Degnan, B. M., Hopper, J. N. A. & Reitner, J. 2000. Phylogeography and taxonomy of the Indo-Pacific reef cave dwelling coralline demosponge Astrosclera ‘willeyana’: new data from nuclear internal transcribed spacer sequences. In Proceedings of the 9th International Coral Reef Symposium, pp. 23–7.Google Scholar
Wu, W., Zhu, M. Y. & Steiner, M. 2014. Composition and tiering of the Cambrian sponge communities. Palaeogeography, Palaeoclimatology, Palaeoecology 398, 8696.Google Scholar
Xiao, S. H., Hu, J., Yuan, X. L., Parsley, R. L. & Cao, R. J. 2005. Articulated sponges from the Lower Cambrian Hetang Formation in southern Anhui, South China: their age and implications for the early evolution of sponges. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 89118.Google Scholar
Yang, R. D., Mao, J. R., Zhang, W. H. & Jiang, L. J. 2002. Study on global distribution of algae biogeographic biota in Early and Middle Cambrian. Journal of Palaeogeography 4, 12–8.Google Scholar
Yang, X. L., Sun, Z. Y., Zhao, Y. L., Peng, J. & Zhen, H. L. 2012. The Niutitang Formation, Terreneuvian–Cambrian Series 2, and the Niutitang Biota in Zunyi, Guizhou, South China. Journal of Guizhou University (Natural Science) 29, 139–52.Google Scholar
Yang, X. L., Zhao, Y. L., Wang, Y. & Wang, P. L. 2005 a. Discovery of sponge body fossils from the late Meishucunian (Cambrian) at Jinsha, Guizhou, South China. Progress in Natural Science 15, 708–12.Google Scholar
Yang, X. L., Zhao, Y. L. & Wu, W. Y. 2003. Discovery of Early and Middle Cambrian Choiidae from Guizhou, SW China. Acta Micropalaeontologica Sinica 20, 286–95.Google Scholar
Yang, X. L., Zhao, Y. L., Wu, W. Y., Zheng, H. L. & Zhu, Y. J. 2014. Phragmodictya jinshaensis sp. nov., a hexactinellid dictyosponge from the Cambrian of Jinsha, South China. GFF 136, 309–13.Google Scholar
Yang, X. L., Zhu, M. Y., Zhao, Y. L. & Wang, Y. 2005 b. Cambrian sponge assemblages from Guizhou. Acta Micropalaeontologica Sinica 22, 295303.Google Scholar
Zamora, S., Gozalo, R. & LiÑÁn, E. 2009. Middle Cambrian gogiid echinoderms from northeast Spain: taxonomy, palaeoecology, and palaeogeographic implications. Acta Palaeontologica Polonica 54, 253–65.CrossRefGoogle Scholar
Zhao, Y. L., Yuan, J. L., Guo, Q. J., Peng, J., Yin, L. M., Yang, X. L., Wang, C. J. & Sun, H. J. 2014. Comments on some important issues concerning the establishment of a GSSP for Cambrian Stage 5. GFF 136, 333–6.Google Scholar
Zhao, Y. L., Yuan, J. L., Peng, J., Yang, X. L. & Esteve, J. 2015. Restudy of Ovatoryctocara Tchernysheva, 1962 from the Kaili Formation, Jianhe County, Guizhou, South China. Annales de Paléontologie 101, 193–8.Google Scholar
Zhao, Y. L., Zhu, M. Y., Babcock, L. E. & Peng, J. 2011. The Kaili Biota—Marine Organisms from 508 Million Years Ago. Guiyang: Guizhou Science and Technology Press, 251 pp.Google Scholar
Zhao, Y. L., Zhu, M. Y., Babcock, L. E., Yuan, J. L., Parsley, R. L., Peng, J., Yang, X. L. & Wang, Y. 2005. Kaili Biota: a taphonomic window on diversification of metazoans from the basal Middle Cambrian: Guizhou, China. Acta Geologica Sinica 79, 751–65.Google Scholar
Zhuravlev, A. Yu. & Riding, R. 2001. The Ecology of the Cambrian Radiation. New York: Columbia University Press, 525 pp.Google Scholar