Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-08T06:37:51.527Z Has data issue: false hasContentIssue false

Neoproterozoic ages of the Kuluketage diabase dyke swarm in Tarim, NW China, and its relationship to the breakup of Rodinia

Published online by Cambridge University Press:  27 November 2008

ZHIYONG ZHANG
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, People's Republic of China
WENBIN ZHU*
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, People's Republic of China
LIANGSHU SHU
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, People's Republic of China
JINBAO SU
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, People's Republic of China
BIHAI ZHENG
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, People's Republic of China
*
*Author for correspondence: zwb@nju.edu.cn

Abstract

The widely exposed Kuluketage diabase dyke swarm, Tarim Block, NW China, has been considered to have been emplaced in Permian times. New precise zircon U–Pb SHRIMP ages for two samples from the dyke swarm yield Neoproterozoic ages of 823.8±8.7 Ma and 776.8±8.9 Ma. Correlated with peaks of magmatism in South China and Australia at c. 825 Ma and c. 780 Ma, these two new ages provide significant information for palaeocontinental reconstructions. The prolonged duration of the magmatic events, combined with regional stratigraphic relationships, imply that the Tarim Block may have been affected by a mantle plume during the breakup of Rodinia.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldo, E., Casquet, C., Pankhurst, R. J., Galindo, C., Rapela, C. W., Fanning, C. M., Dahlquist, J. & Murra, J. 2006. Neoproterozoic A-type magmatism in the Western Sierras Pampeanas (Argentina): evidence for Rodinia break-up along a proto-lapetus rift? Terra Nova 18, 388–94.CrossRefGoogle Scholar
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.CrossRefGoogle Scholar
Chen, Y., Xu, B., Zhan, S. & Li, Y. G. 2004. First mid-Neoproterozoic paleomagnetic results from the Tarim Basin (NW China) and their geodynamic implications. Precambrian Research 133, 271–81.CrossRefGoogle Scholar
Ernst, R. E., Wingate, M. T. D., Buchan, K. L. & Li, Z. X. 2008. Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research 160, 159–78.CrossRefGoogle Scholar
Guo, Z. J., Yin, A., Robinson, A. & Jia, C. Z. 2005. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin. Journal of Asian Earth Sciences 25, 4556.CrossRefGoogle Scholar
Hu, A. Q., Jahn, B. M., Zhang, G. X., Chen, Y. B. & Zhang, Q. F. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328, 1551.CrossRefGoogle Scholar
Jiang, C. Y., Jiang, H. B., Ye, S. F., Xia, M. Z. & Lu, D. X. 2005. Petrochemical characteristics, Nd, Sr, Pb isotopic compositions and petrogenesis of Permian dike swarm, Kuruktag Region, Xinjiang. Acta Geologica Sinica 79, 823–33 (in Chinese with English abstract).Google Scholar
Li, Q. G., Liu, S. W., Wang, Z. Q., Yan, Q. R., Guo, Z. J., Zhang, Z. C., Zheng, H. F., Jiang, C. F., Wang, T. & Chu, Z. Y. 2007. Geochemical constraints on the petrogenesis of the Proterozoic granitoid gneisses from the eastern segment of the Central Tianshan Tectonic Zone, northwestern China. Geological Magazine 144, 305–17.CrossRefGoogle Scholar
Li, W. X., Li, X. H. & Li, Z. X. 2008. Middle Neoproterozoic syn-rifting volcanic rocks in Guangfeng, South China: petrogenesis and tectonic significance. Geological Magazine 145, 475–89.CrossRefGoogle Scholar
Li, Y. J., Jia, C. Z., Hu, S. L., Huang, Z. B., Zeng, Q. & Tan, Z. J. 1999. The 40Ar–39Ar isotopic age of Wajilitag gabbro in Tarim basin and its geological significance. Acta Petrologica Sinica 15, 594–9 (in Chinese with English abstract).Google Scholar
Li, Y. J., Song, W. J., Wu, G. Y., Wang, Y. F., Li, Y. P. & Zheng, D. M. 2005. Jinning granodiorite and diorite deeply concealed in the central Tarim Basin. Science in China Series D: Earth Sciences 48, 2061–8.CrossRefGoogle Scholar
Li, Z. X., Zhang, L. & Powell, C. M. 1996. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodinia. Australian Journal of Earth Sciences 43, 593604.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Kinny, P. D., Wang, J., Zhang, S. & Zhou, H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research 122, 85109.CrossRefGoogle Scholar
Liu, Y. L., Zhang, Z. C., Guo, Z. J., Huang, B. L. & Mu, Z. G. 1999. K–Ar isochron dating of Kuluktag mafic dykes, Xinjiang autonomous region, and discussion on some related questions. Geological Journal of China Universities 5, 54–8 (in Chinese with English abstract).Google Scholar
Lu, S. N., Li, H. K., Zhang, C. L. & Niu, G. H. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research 160, 94107.CrossRefGoogle Scholar
Williams, I. S. 1998. U–Th–Pb geochronology by ion microprobe. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds M. A. McKibben, W. C. Shanks & W. I. Ridley), pp. 1–35. Reviews in Economic Geology 7.Google Scholar
Xinjiang BGMR (Xinjiang Bureau of Geology and Mineral Resources). 1993. Regional Geology of the Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House (in Chinese with English abstract), 841 pp.Google Scholar
Xu, B., Jian, P., Zheng, H. F., Zou, H. B., Zhang, L. F. & Liu, D. Y. 2005. U–Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: implications for the breakup of Rodinia supercontinent. Precambrian Research 136, 107–23.CrossRefGoogle Scholar
Yin, A. & Nie, S. 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In Tectonic Evolution of Asia (eds Yin, A. & Harrison, T. M.), pp. 442–85. New York: Cambridge University Press.Google Scholar
Zhan, S., Chen, Y., Xu, B., Wang, B. & Faure, M. 2007. Late Neoproterozoic paleomagnetic results from the Sugetbrak Formation of the Aksu area, Tarim basin (NW China) and their implications to paleogeographic reconstructions and the snowball Earth hypothesis. Precambrian Research 154, 143–58.CrossRefGoogle Scholar
Zhang, C. L., Li, Z. X., Li, X. H., Ye, H. M., Wang, A. G. & Guo, K. Y. 2006. Neoproterozoic bimodal intrusive complex in the southwestern Tarim block, NW China: age, geochemistry and implications for the rifting of Rodinia. International Geology Review 18, 112–28.CrossRefGoogle Scholar
Zhang, C. L., Lu, S. N., Yu, H. F. & Ye, H. M. 2007 a. Tectonic evolution of the Western Kunlun orogenic belt in northern Qinghai–Tibet Plateau: evidence from zircon SHRIMP and LA–ICP–MS U–Pb geochronology. Science in China Series D: Earth Sciences 50, 825–35.CrossRefGoogle Scholar
Zhang, C. L., Li, X. H., Li, Z. X., Lu, S. N., Ye, H. M. & Li, H. M. 2007 b. Neoproterozoic ultramafic–mafic–carbonatite complex and granitoids in Quruqtagh of northeastern Tarim Block, western China: geochronology, geochemistry and tectonic implications. Precambrian Research 152, 149–69.CrossRefGoogle Scholar
Zhang, Z. C., Guo, Z. J. & Liu, S. W. 1998. Age and tectonic significance of mafic dyke swarm in the Kuruktag Region, Xinjiang. Acta Geologica Sinica 72, 2936.Google Scholar
Zhang, Z. C., Guo, Z. J., Liu, Y. L. & Liu, S. W. 2004. Helium and argon isotopic compositions of mafic dyke swarm and its implication from Kuluketag, Xinjiang. Xinjiang Geology 22, 12–5 (in Chinese with English abstract).Google Scholar
Zhou, M. F., Lesher, C. M., Yang, Z. X., Li, J. W. & Sun, M. 2004. Geochemistry and petrogenesis of 270 Ma Ni–Cu–(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology 209, 233–57.CrossRefGoogle Scholar
Zhu, W. B., Zhang, Z. Y., Shu, L. S., Wan, J. L., Lu, H. F., Wang, S. L., Yang, W. & Su, J. B. 2007. Uplift and exhumation history of the Precambrian basement, Northern Tarim: evidence from apatite fission track data. Acta Petrologica Sinica 23, 1671–82 (in Chinese with English abstract).Google Scholar
Zhu, W. B., Zhang, Z. Y., Shu, L. S., Lu, H. F., Su, J. B. & Yang, W. 2008. SHRIMP U–Pb zircon geochronology of Neoproterozoic Korla mafic dykes in the northern Tarim Block, NW China: implications for the long-lasting breakup process of Rodinia. Journal of the Geological Society, London 165, 887–90.CrossRefGoogle Scholar
Supplementary material: PDF

Zhang supplementary material

Appendix 1.pdf

Download Zhang supplementary material(PDF)
PDF 70.3 KB
Supplementary material: File

Zhang supplementary material

Appendix 2.doc

Download Zhang supplementary material(File)
File 114.2 KB