Skip to main content Accessibility help
×
Home

Multi-stage growth and fluid evolution of a hydrothermal sulphide chimney in the East Pacific Ridge 1–2° S hydrothermal field: constraints from in situ sulphur isotopes

  • XINGWEI MENG (a1) (a2), XIAOHU LI (a1) (a2), FENGYOU CHU (a1) (a2), BIN FU (a3), JIJIANG LEI (a1) (a2), ZHENGGANG LI (a1) (a2), HAO WANG (a1) (a2) and LIN CHEN (a1) (a2)...

Abstract

Sulphur isotopes can be used as a powerful tool to trace fluid evolution and explore the formation of chimneys. To clarify the in situ S isotopic variations of sulphides at the micro-scale, we analyzed a sulphide chimney collected from the hydrothermal field in the East Pacific Rise 1–2° S using a sensitive high-mass-resolution ion micro-probe for stable isotopes (SHRIMP SI). Three mineral zones can be identified in the chimney: an external outer wall of porous anhydrite and colloform pyrite, an internal middle zone of sub-euhedral pyrite and massive chalcopyrite, and an inner zone of massive pyrite. The δ34SV-CDT values of the sulphides fall within the range 1.83–7.51 ‰ (avg. 4.05 ‰, n = 16), and S isotopic values increase from the core (3.09 ‰, n = 3) to the middle (3.78 ‰, n = 11) to the edge (6.99 ‰, n = 2). These results illustrate mineral crystallization processes and the mixing between seawater-derived S and magmatic–hydrothermal fluids during the growth of the chimney. The zones from the edge to the core are characterized by crystal morphologies of colloform/anhedral pyrite to massive pyrite with decreasing δ34S values, revealing multi-stage mineral deposition and sulphur isotopic fractionation. In contrast to the increase in δ34S values from the core to the edge in one profile (profile A), anomalously low δ34S values in fine-grained pyrite relative to chalcopyrite in another profile (profile B) in the middle zone result from S isotopic exchange between seawater SO42− and fluid H2S due to different fluid–seawater mixing, possibly caused by variations in permeability and porosity across the chimney.

Copyright

Corresponding author

Author for correspondence: xhli@sio.org.cn

References

Hide All
Alt, J. C. & Shanks, W. C. 2011. Microbial sulfate reduction and the sulfur budget for a complete section of altered oceanic basalts, IODP Hole 1256D (eastern Pacific). Earth & Planetary Science Letters 310, 7383.
Berkenbosch, H. A., Ronde, C. E. J. D., Gemmell, J. B., Mcneill, A. W. & Goemann, K. 2012. Mineralogy and formation of black smoker chimneys from Brothers Submarine Volcano, Kermadec Arc. Economic Geology 107, 1613–33.
Blum, N. & Puchelt, H. 1991. Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban Deeps, Red Sea. Mineralium Deposita 26, 217–27.
Bluth, G. J. & Ohmoto, H. 1988. Sulfide-sulfate chimneys on the East Pacific Rise, 11° and 13° N latitudes. Part II: sulfur isotopes. Canadian Mineralogist 26, 487504.
Böhlke, J. K. & Shanks, W. C. 1994. Stable isotope study of hydrothermal vents at Escanaba Trough: observed and calculated effects of sediment-seawater interaction. U. S. Geological Survey Bulletin 2022, 223–39.
Bowers, T. S. 1989. Stable isotope signatures of water-rock interaction in mid-ocean ridge hydrothermal systems: sulfur, oxygen, and hydrogen. Journal of Geophysical Research: Solid Earth 94, 5775–86.
Brett, R., Evans, H. T. Jr, Gibson, E. K. Jr, Hedenquist, J. W., Wandless, M. V. & Sommer, M. A. 1987. Mineralogical studies of sulfide samples and volatile concentrations of basalt glasses from the southern Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth 92, 11373–9.
Canfield, D. E. 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta 65, 1117–24.
Chen-Long, A. N., Fan, D. J., Sun, X. X. & Yang, Z. S. 2014. Study of suspended particulate sulfides in the Eastern Pacific Rise area and their connection with seafloor hydrothermal activities. Periodical of Ocean University of China 44, 7583 (in Chinese with English summary).
Crowe, D. E. & Valley, J. W. 1992. Laser microprobe study of sulfur isotope variation in a sea-floor hydrothermal spire, Axial Seamount, Juan de Fuca Ridge, eastern Pacific. Chemical Geology Isotope Geoscience 101, 6370.
Crowe, D. E. & Vaughan, R. G. 1996. Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of 34S/32S ratios. American Mineralogist 81, 187–93.
Deming, J. W. & Baross, J. A. 1993. Deep-sea smokers: windows to a subsurface biosphere? Geochimica et Cosmochimica Acta 57, 3219–30.
Dick, H. J. B., Lin, J. & Schouten, H. 2003. An ultraslow-spreading class of ocean ridge. Nature 426, 405412.
Ding, X., Li, J., Zheng, C. Q., Huang, W., Cui, R. Y., Dou, Y. G & Sun, Z. L. 2014. Chemical composition of the basalts on East Pacific Rise (1.5° N–1.5° S) and south Mid-Atlantic Ridge (13.2° S). Marine Geology Quaternary Geology 5, 5766 (in Chinese with English summary).
Duckworth, R. C., Fallick, A. E. & Rickard, D. 1994. Mineralogy and sulfur isotopic composition of the Middle Valley massive sulfide deposit, northern Juan de Fuca Ridge. Proceedings of the Ocean Drilling Program, Scientific Results 139, 373–85.
Duckworth, R. C., Knott, R., Fallick, A. E., Rickard, D., Murton, B. J. & Van Dover, C. 1995. Mineralogy and sulphur isotope geochemistry of the Broken Spur sulphides, 29° N, Mid-Atlantic Ridge. In Hydrothermal Vents and Processes (eds Parson, L. M., Walker, C. L. & Dixon, D. R.), pp. 175–89. Geological Society of London, Special Publication no. 87.
Gavelin, S., Parwel, A. & Ryhage, R. 1960. Sulfur isotope fractionation in sulfide mineralization. Economic Geology 55, 510–30.
Goldfarb, M., Converse, D., Holland, H. & Edmond, J. 1983. The genesis of hot spring deposits on the East Pacific Rise, 21° N. Economic Geology Monograph 5, 184–97.
Goodfellow, W. D. & Franklin, J. M. 1993. Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, Northern Juan de Fuca Ridge. Economic Geology 88, 2037–68.
Graham, U. M., Bluth, G. J. & Ohmoto, H. 1988. Sulfide-sulfate chimneys on the East Pacific Rise, 11 degrees and 13 degrees N latitudes; Part I, Mineralogy and paragenesis. Canadian Mineralogist 26, 487504.
Hannington, M. D. & Scott, S. D. 1988. Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan De Fuca Ridge. Canadian Mineralogist 26, 603–25.
Haymon, R. M. 1983. Growth history of hydrothermal black smoker chimneys. Nature 301, 695–8.
Hekinian, R., Fevrier, M., Bischoff, J. L., Picot, P. & Shanks, W. C. 1980. Sulfide deposits from the East Pacific Rise near 21° N. Science 207, 1433–44.
Herzig, P. M., Hannington, M. D. & Arribas, A. A. Jr. 1998. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems. Mineralium Deposita 33, 226–37.
Herzig, P. M., Petersen, S. & Hannington, M. D. 1998. Geochemistry and sulfur-isotopic composition of the TAG hydrothermal mound, Mid-Atlantic Ridge, 26 N. Veterinary Immunology & Immunopathology 123, 32–44.
Holler, G. 1999. Models of magmatic and hydrothermal development of the fast-spreading southern East Pacific Rise. Neues Jahrbuch für Geologie und Palaontologie – Abhandlungen 214, 275300.
Holler, G. & Marchig, V. 1990. Hydrothermal activity on the East Pacific Rise: stages of development. Geologisches Jahrbuch Reihe B 75, 322.
Ireland, T. R., Clement, S., Compston, W., Foster, J. J., Holden, P., Jenkins, B., Lanc, P., Schram, N. & Williams, I. S. 2008. Development of SHRIMP. Applied Energy 86, S77–S85.
Ireland, T. R., Schram, N., Holden, P., Lanc, P., Ávila, J., Armstrong, R., Amelin, Y., Latimore, A., Corrigan, D. & Clement, S. 2014. Charge-mode electrometer measurements of S-isotopic compositions on SHRIMP-SI. International Journal of Mass Spectrometry 359, 2637.
Janecky, D. R. & Shanks, W. C. I. 1988. Computational modeling of chemical and sulfur isotopic reaction processes in seafloor hydrothermal systems: chimneys, massive sulfides, and subjacent alteration zones. Canadian Mineralogist 26, 805–25.
Keith, M., Haase, K. M., Klemd, R., Krumm, S. & Strauss, H. 2016a. Systematic variations in the trace element and sulphur isotope composition of pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulphide deposit, Troodos ophiolite, Cyprus. Chemical Geology 423, 718.
Keith, M., Häckel, F., Haase, K. M., Schwarz-Schampera, U. & Klemd, R. 2016b. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geology Reviews 72, 728–45.
Kerridge, J. F., Haymon, R. M. & Kastner, M. 1983. Sulfur isotope systematics at the 21° N site, East Pacific Rise. Earth & Planetary Science Letters 66, 91100.
Kim, J., Lee, I., Halbach, P., Lee, K. Y., Ko, Y. T. & Kim, K. H. 2006. Formation of hydrothermal vents in the North Fiji Basin: sulfur and lead isotope constraints. Chemical Geology 233, 257–75.
Knott, R., Fouquet, Y., Honnorez, J., Petersen, S. & Bohn, M. 1998. Petrology of hydrothermal mineralization: a vertical section through the TAG mound. Proceedings of the Ocean Drilling Program, Scientific Results 158, 526.
Koski, R. A., Jonasson, I. R., Kadko, D., Smith, V. K. & Wong, F. L. 1994. Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide‐sulfate‐silica chimneys at the northern Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research 99, 4813–32.
Kristall, B., Kelley, D. S., Hannington, M. D. & Delaney, J. R. 2006. Growth history of a diffusely venting sulfide structure from the Juan de Fuca Ridge: a petrological and geochemical study. Geochemistry Geophysics Geosystems 7, 509–17.
Kristall, B., Nielsen, D., Hannington, M. D., Kelley, D. S. & Delaney, J. R. 2011. Chemical microenvironments within sulfide structures from the Mothra Hydrothermal Field: evidence from high-resolution zoning of trace elements. Chemical Geology 290, 1230.
Kusakabe, M., Mayeda, S. & Nakamura, E. 1990. S, O and Sr isotope systematics of active vent materials from the Mariana backarc basin spreading axis at 18° N. Earth & Planetary Science Letters 100, 275–82.
Lein, A. Y., Ulyanova, N. V., Ulyanov, A. A., Cherkashev, G. A. & Stepanova, T. V. 2001. Mineralogy and geochemistry of sulfide ores in ocean-floor hydrothermal fields associated with serpentinite protrusions. Russian Journal of Earth Sciences 3, 371–93.
Lever, M. A., Rouxel, O., Alt, J. C., Shimizu, N., Ono, S., Coggon, R. M., Rd, S. W., Lapham, L., Elvert, M. & Prietomollar, X. 2013. Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt. Science 339, 1305–8.
Lode, S., Piercey, S. J., Layne, G. D., Piercey, G. & Cloutier, J. 2017. Multiple sulphur and lead sources recorded in hydrothermal exhalites associated with the Lemarchant volcanogenic massive sulphide deposit, central Newfoundland, Canada. Mineralium Deposita 52, 105–28.
MacDonald, K. C. & Fox, P. J. 1983. Overlapping spreading centres: new accretion geometry on the East Pacific Rise. Nature 302, 55–8.
Marchig, V., Blum, N. & Roonwal, G. 1997. Massive sulfide chimneys from the East Pacific rise at 7° 24ʹS and 16° 43ʹS. Marine Georesources & Geotechnology 15, 4966.
McDermott, J. M., Ono, S., Tivey, M. K., Seewald, J. S., Shanks, W. C. & Solow, A. R. 2015. Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes. Geochimica et Cosmochimica Acta 160, 169–87.
Ohmoto, H. 1997. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.), pp. 517612. New York: John Wiley & Sons Ltd.
Ohmoto, H. & Lasaga, A. C. 1982. Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochimica et Cosmochimica Acta 46, 1727–45.
Ohmoto, H. & Rye, R. O. 1979. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.), pp. 506–67. New York: John Wiley & Sons Ltd.
Ono, S., Shanks, W. C., Rouxel, O. J. & Rumble, D. 2007. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochimica et Cosmochimica Acta 71, 1170–82.
Peng, X. & Zhou, H. 2005. Growth history of hydrothermal chimneys at EPR 9–10° N: a structural and mineralogical study. Science China Earth Sciences 48, 1891–99.
Peter, J. M. & Iii, W. C. S. 1992. Sulfur, carbon, and oxygen isotope variations in submarine hydrothermal deposits of Guaymas Basin, Gulf of California, USA. Geochimica et Cosmochimica Acta 56, 2025–40.
Petersen, S., Herzig, P. M., Hannington, M. D., Jonasson, I. R. & Arribas, A. Jr. 2002. Submarine gold mineralization near Lihir Island, New Ireland ForeArc, Papua New Guinea. Economic Geology 97, 1795–813.
Rees, C. E., Jenkins, W. J. & Monster, J. 1978. The sulphur isotopic composition of ocean water sulphate. Geochimica et Cosmochimica Acta 42, 377–81.
Rona, P. A., Hannington, M. D., Raman, C. V., Thompson, G., Tivey, M. K., Humphris, S. E., Lalou, C. & Petersen, S. 1993. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge. Economic Geology 88, 19892017.
Ronde, C. E. D., Faure, K., Bray, C. J., Chappell, D. A. & Wright, I. C. 2003. Hydrothermal fluids associated with seafloor mineralization at two southern Kermadec arc volcanoes, offshore New Zealand. Mineralium Deposita 38, 217–33.
Rouxel, O., Fouquet, Y. & Ludden, J. N. 2004a. Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic ridge: evidence from sulfur, selenium, and iron isotopes 1. Geochimica et Cosmochimica Acta 68, 2295–311.
Rouxel, O. D., Fouquet, Y. & Ludden, J. N. 2004b. Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the Mid-Atlantic Ridge. Economic Geology 99, 585600.
Rouxel, O., Shanks, W. C., Bach, W. & Edwards, K. J. 2008a. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10° N. Chemical Geology 252, 214–27.
Rouxel, O., Ono, S., Alt, J., Rumble, D. & Ludden, J. 2008b. Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801. Earth & Planetary Science Letters 268, 110–23.
Sakai, H., Marais, D. J. D., Ueda, A. & Moore, J. G. 1984. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochimica et Cosmochimica Acta 48, 2433–41.
Shanks, W. C. 2001. Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Reviews in Mineralogy & Geochemistry 43, 469525.
Shanks, W. C. & Niemitz, J. 1982. Sulfur isotope studies of hydrothermal anhydrite and pyrite, Deep Sea Drilling Project Leg 64, Guaymas Basin, Gulf of California. Initial Rep. Deep Sea Drill. Proj 64, 1137–42.
Shanks, W. C. & Seyfried, W. E. 1987. Stable isotope studies of vent fluids and chimney minerals, southern Juan de Fuca Ridge: sodium metasomatism and seawater sulfate reduction. Journal of Geophysical Research 92, 11387–99.
Shao, M. J., Yang, Y. M., Xin, S. U., Jun, Y. E., Shi, X. F. & Geology, E. 2014. Study on chimney mineralogy from the 26° S hydrothermal field in South Mid-Atlantic Ridge. China Mining Magazine 5, 7781.
Sim, M. S., Bosak, T. & Ono, S. 2011. Large sulfur isotope fractionation does not require disproportionation. Science 333, 74–7.
Sours-Page, R., Nielsen, R. L. & Batiza, R. 2002. Melt inclusions as indicators of parental magma diversity on the northern East Pacific Rise. Chemical Geology 183, 237–61.
Stuart, F. M., Duckworth, R., Turner, G. & Schofield, P. F. 1994. Helium and sulfur isotopes of sulfide minerals from Middle Valley, northern Juan de Fuca Ridge. Proceedings of the Ocean Drilling Program, Scientific Results 139, 387–92.
Styrt, M. M., Brackmann, A. J., Holland, H. D., Clark, B. C., Pisutha-Arnond, V., Eldridge, C. S. & Ohmoto, H. 1981. The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21° N latitude. Earth & Planetary Science Letters 53, 382–90.
Syverson, D. D., Borrok, D. M., & Seyfried, W. E. Jr, 2013. Experimental determination of equilibrium Fe isotopic fractionation between pyrite and dissolved Fe under hydrothermal conditions. Geochimica et Cosmochimica Acta 122, 170–83.
Tanner, D., Henley, R. W., Mavrogenes, J. A. & Holden, P. 2016. Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au–Cu–Ag deposit, Chile. Contributions to Mineralogy & Petrology 171 (4), 33.133.17.
Tao, C., Li, H., Wu, G., Su, X., Zhang, G. &; Chinese DY115-21 Leg 3 Scientific Party. 2011. First hydrothermal active vent discovered on the Galapagos Microplate. AGU Fall Meeting Abstract OS11B-1488.
Tao, C., Lin, J., Wu, G., German, C. R., Yoerger, D. R., Chen, Y. J., Guo, S., Zeng, Z., Han, X. & Zhou, N. 2008. First active hydrothermal vent fields discovered at the equatorial Southern East Pacific Rise. AGU Fall Meeting Abstract V41B-2081.
Tivey, M. K. 1995. The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modeling transport and reaction. Geochimica et Cosmochimica Acta 59, 1933–49.
Tivey, M. K. 1998. How to build a black smoker chimney. Oceanus 41, 22–6.
Tivey, M. K. 2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 35 (7), 1703–14.
Tivey, M. K. & McDuff, R. E. 1990. Mineral precipitation in the walls of black smoker chimneys: a quantitative model of transport and chemical reaction. Journal of Geophysical Research Atmospheres 95, 12617– 37.
Tivey, M. K., Humphris, S. E., Thompson, G., Hannington, M. D. & Rona, P. A. 1995. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. Journal of Geophysical Research Atmospheres 100, 12527–55.
Tivey, M. K., Zhu, W. & Kelley, D. S. 2001. Laboratory quantification of permeability and pore structure in seafloor hydrothermal vent deposit samples. Eos 82 (47), Fall Meeting Supplement, Abstract OS21B-0452.
Wang, L. & Zhu, Y. 2015. Multi-stage pyrite and hydrothermal mineral assemblage of the Hatu gold district (west Junggar, Xinjiang, NW China): implications for metallogenic evolution. Ore Geology Reviews 69, 243–67.
Wohlgemuth-Ueberwasser, C. C., Viljoen, F., Petersen, S. & Vorster, C. 2015. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study. Geochimica et Cosmochimica Acta 159, 1641.
Woodruff, L. G. & Shanks, W. C. 1988. Sulfur isotope study of chimney minerals and vent fluids from 21° N, East Pacific Rise: hydrothermal sulfur sources and disequilibrium sulfate reduction. Journal of Geophysical Research Atmospheres 93, 4562–72.
Zeng, Z. G., Chen, S., Selby, D., Yin, X. & Wang, X. 2014. Rhenium–osmium abundance and isotopic compositions of massive sulfides from modern deep-sea hydrothermal systems: implications for vent associated ore forming processes. Earth & Planetary Science Letters 396, 223–34.
Zeng, Z. G., Jiang, F. Q., Qin, W. S. & Qu, S. K. 2001. Sulfur isotopic composition of modern seafloor hydrothermal sediment and its geological significance. Acta Oceanologica Sinica 23, 4856 (in Chinese with English summary).
Zeng, Z. G., Ma, Y., Yin, X., Selby, D., Kong, F. & Chen, S. 2015b. Factors affecting the rare earth element compositions in massive sulfides from deep‐sea hydrothermal systems. Geochemistry Geophysics Geosystems 16, 2679–93.
Zeng, Z. G., Ma, Y., Chen, S., Selby, D., Wang, X. & Yin, X. 2016. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation. Ore Geology Reviews 87, 155–71..
Zeng, Z. G., Niedermann, S., Chen, S., Wang, X. & Li, Z. 2015a. Noble gases in sulfide deposits of modern deep-sea hydrothermal systems: implications for heat fluxes and hydrothermal fluid processes. Chemical Geology 409, 111.
Zeng, Z. G., Qin, Y. S., Zhao, Y. Y. & Zhai, S. K. 2000. Sulfur isotopic composition of seafloor surface hydrothermal sediments in the TAG hydrothermal field of Mid-Atlantic ridge and its geological implications. Acta Oceanologica Sinica 31, 518–29.
Zeng, Z. G., Zhang, W., Rong, S. B., Wang, X. Y., Chen, S., Cui, L. K., Jiang, S. L. & Qi, H. Y. 2015c. Seafloor hydrothermal activity and polymetallic sulfide resources potential in the East Pacific Rise. Bulletin of Mineralogy, Petrology and Geochemistry 34, 938–46 (in Chinese with English summary).
Zhang, Y., Shao, Y. J., Chen, H. Y., Liu, Z. F. & Li, D. F. 2016. A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit, Eastern China: evidence from sulfide geochemistry and sulfur isotopes. Ore Geology Reviews 88, 534–49.
Zhu, W., Tivey, M. K., Gittings, H. & Craddock, P. R. 2007. Permeability‐porosity relationships in seafloor vent deposits: dependence on pore evolution processes. Journal of Geophysical Research: Solid Earth 112, 2637–55.
Zierenberg, R. A. & Shanks, W. C. 1988. Isotopic studies of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Canadian Mineralogist 26, 737–53.
Zierenberg, R. A. & Shanks, W. C. 1994. Sediment alteration associated with massive sulfide formation in Escanaba Trough, Gorda Ridge: the importance of seawater mixing and magnesium metasomatism. US Geological Survey Bulletin 2022, 257–77.
Zierenberg, R. A., Shanks, W. C. & Bischoff, J. L. 1984. Massive sulfide deposits at 21° N, East Pacific Rise: chemical composition, stable isotopes, and phase equilibria. Geological Society of America Bulletin 95, 922–9.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed