Skip to main content Accessibility help
×
Home

Mineralogical composition of and trace-element accumulation in lower Toarcian anoxic sediments: a case study from the Bilong Co. oil shale, eastern Tethys

  • XIUGEN FU (a1) (a2), JIAN WANG (a1) (a2), XINGLEI FENG (a1), WENBIN CHEN (a1), DONG WANG (a1), CHUNYAN SONG (a1) (a2) and SHENGQIANG ZENG (a1)...

Abstract

The sediments of organic-rich oil shales in the Bilong Co. area can be correlated with those of the early Toarcian anoxic black-shale events in Europe. The Bilong Co. sediments are rich in trace elements Se, Mo, Cd, As and Ni, and, to a lesser extent, Li, F, V, Co, Cu, Cs, Hg and Bi, in comparison to the upper continental crust. Thirty-two oil shale samples were collected from the Bilong Co. oil shale to evaluate the controlling factors of trace-element enrichment in the lower Toarcian anoxic sediments. Minerals identified in the Bilong Co. oil shale include calcite, quartz, illite, feldspar and dolomite, and trace amounts of siderite, magnesite, halite, haematite, zeolite, amphibole, gypsum, anhydrite, apatite, pyrite, sphalerite, barite and mixed-layer illite/smectite. Mineralogical and geochemical data show that seawater and hydrothermal activities are the dominant influences on the mineralogical composition and elevated trace-element concentrations in the oil shale. The clay minerals, quartz and feldspar in the Bilong Co. oil shale were derived from the Nadi Kangri volcanic rocks. Input of sediment from this source may have led to enrichment of trace elements Li, Cr and Cs in the oil shale. Carbonate minerals and nodular- and framboidal-pyrite are authigenic phases formed from seawater. The enrichment of V, Co, Ni, Cu, Mo, As, Se, Bi and U in the oil shale was owing to marine influence. Barite, sphalerite and fracture-filling pyrites were derived from hydrothermal solutions. High concentrations of F, Zn and Cd were probably derived from hydrothermal fluids.

Copyright

Corresponding author

Author for correspondence: fuxiugen@126.com

References

Hide All
Algeo, T. J. & Maynard, J. B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology 206, 289318.
Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P. & Ramasamy, S. 2004. Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implication for provenance, weathering and tectonic setting. Journal of Sedimentary Research 74, 285–97.
Baruah, M. K., Kotoky, P., Baruah, J. & Bora, G. C. 2005. Extent of lead in high sulphur Assam coals. Fuel Processing Technology 86, 731–4.
Bencko, V. & Symon, K. 1977. Health aspects of burning coal with a high arsenic content: 1. Arsenic in hair, urine, and blood in children residing in a polluted area. Environmental Research 13, 378–85.
Chen, L., Yi, H. S., Hu, R. Z., Zhong, H. & Zou, Y. R. 2005. Organic geochemistry of the early Jurassic oil shale from the Shuanghu area in northern Tibet and the early Toarcian oceanic anoxic event. Acta Geologica Sinica – English Edition 79, 392–7.
Dai, S. F., Ren, D. Y., Chou, C.-L., Finkelman, R. B., Seredin, V. V. & Zhou, Y. P. 2012. Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology 94, 321.
Dai, S. F., Ren, D. Y., Tang, Y. G., Yue, M. & Hao, L. M. 2005. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology 61, 119–37.
Dai, S. F., Tian, L. W., Chou, C.-L., Zhou, Y. P., Zhang, M. Q., Zhao, L., Wang, J. M., Yang, Z., Cao, H. Z. & Ren, D. Y. 2008. Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: occurrence and origin of quartz and chamosite. International Journal of Coal Geology 76, 318–27.
Dai, S. F., Zhang, W. G., Seredin, V. V., Ward, C. R., Hower, J. C., Song, W. J., Wang, X. B., Li, X., Zhao, L. X., Kang, H., Zheng, L. C., Wang, P. P. & Zhou, D. 2013. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: a case study from the Heshan Coalfield, southern China. International Journal of Coal Geology 109–110, 77100.
Ding, W. L., Wan, H., Su, A. G. & He, Z. H. 2011. Characteristics of Triassic marine source rocks and prediction of favorable source kitchens in Qiangtang Basin, Tibet. Energy Exploration & Exploitation 29, 143–60.
DZG 20.10-1990. 1990. Geology Mineral Industry Standard of P.R. China: Rock and Mineral Analysis (in Chinese).
DZ/T 0223-2001. 2001. Geology Mineral Industry Standard of P.R. China: The General Analysis Rules for Inductively Coupled Plasma Mass Spectrometry (in Chinese).
Fedo, C. M., Eriksson, K. A. & Krogstad, E. J. 1996. Geochemistry of shales from the (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta 60, 1751–63.
Fedo, C. M., Nesbitt, H. W. & Young, G. M. 1995. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–4.
Finkelman, R. B., Belkin, H. E. & Zheng, B. S. 1999. Health impacts of domestic coal use in China. Proceedings of the National Academy of Sciences of the United States of America 96, 3427–31.
Fu, X. G., Liao, Z. L., Wang, J. & Chen, W. B. 2008. Geochemistry and significance of oil seepages in the Zaring area of the southern Qiangtang depression, northern Tibet. Acta Sedimentologica Sinica 26, 697704 (in Chinese with English abstract).
Fu, X. G., Tan, F. W., Feng, X. L., Wang, D., Chen, W. B., Song, C. Y. & Zeng, S. Q. 2014. Early Jurassic anoxic conditions and organic accumulation in the eastern Tethys. International Geology Review 56, 1450–65.
Fu, X. G., Wang, J., Tan, F. W., Chen, M. & Chen, W. B. 2010. The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet (China): age and tectonic implications. Gondwana Research 17, 135–44.
Fu, X. G., Wang, J., Tan, F. W., Feng, X. L. & Zeng, S. Q. 2013. Minerals and potentially hazardous trace elements in the Late Triassic coals from the Qiangtang Basin, China. International Journal of Coal Geology 116–117, 93105.
Fu, X. G., Wang, J., Tan, F. W., Feng, X. L., Zeng, S. Q., Chen, W. B. & Wang, D. 2015. Minerals and potentially hazardous trace elements in marine oil shale: new insights from the Shengli River North surface mine, northern Tibet, China. Environmental Earth Sciences 104, 495511.
Fu, X. G., Wang, J., Tan, F. W. & Zeng, Y. H. 2009. Sedimentological investigations of the Shengli River-Changshe Mountain oil shale (China): relationships with oil shale formation. Oil Shale 26, 373–81.
Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W. & Feng, X. L. 2011. Concentration and mode of occurrence of trace elements in marine oil shale from the Bilong Co area, northern Tibet, China. International Journal of Coal Geology 85, 112–22.
Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W. & Feng, X. L. 2012. Source regions and the sedimentary paleoenvironment of marine oil shale from the Bilong Co area, northern Tibet, China: an Sr-Nd isotopic study. Oil Shale 29, 306–21.
Griffith, E. M. & Paytan, A. 2012. Barite in the ocean – occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59, 1817–35.
Hayashi, K. I., Fujisawa, H., Holland, H. D. & Ohmoto, H. 1997. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimimica et Cosmochimica Acta 61, 4115–37.
He, B., Xu, Y.-G., Zhong, Y.-T. & Guan, J-P. 2010. The Guadalupian–Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism. Lithos 119, 10–9.
Hetzel, A., März, C., Vogt, C. & Brumsack, H.-J. 2011. Geochemical environment of Cenomanian – Turonian black shale deposition at Wunstorf (northern Germany). Cretaceous Research 32, 480–94.
Hillier. 2000. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Minerals 35, 291302.
Liu, Z. J., Yang, H. L., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Meng, Q. T., Zhang, H. L. & Gan, S. C. 2009. Oil Shale in China, pp. 1157–67. Beijing: Petroleum Industry Press (in Chinese with English abstract).
Moore, F. & Esmaeili, A. 2012. Mineralogy and geochemistry of the coals from the Karmozd and Kiasar coal mines, Mazandaran province, Iran. International Journal of Coal Geology 96–97, 921.
Nesbitt, H. W., Markovics, G. & Price, R. C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta 44, 1659–66.
Nesbitt, H. W. & Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–7.
Nesbitt, H. W. & Young, G. M. 1989. Formation and diagenesis of weathering profiles. Journal of Geology 97, 129–47.
Otto, C. S. 1997. Mesozoic–Cenozoic history of deformation and petroleum systems in sedimentary basins of Central Asia; implications of collisions on the Eurasian margin. Petroleum Geoscience 3, 327–41.
Pattan, J. N. & Pearce, N. J. G. 2009. Bottom water oxygenation history in southeastern Arabian Sea during the past 140 ka: results from redox-sensitive elements. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 396405.
Paytan, A., Mearon, S., Cobb, K. & Kastner, M. 2002. Origin of marine barite deposits: Sr and S isotope characterization. Geology 30, 747–50.
Ramdohr, P. 1980. The Ore Minerals and their Intergrowths, pp. 11205. Oxford: Pergamon Press.
Reimann, C. & de Caritat, P. 1998. Chemical Elements in the Environment. Berlin: Springer, 397 pp.
Seredin, V. V. & Dai, S. F. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology 94, 6793.
Seredin, V. V. & Finkelman, R. B. 2008. Metalliferous coals: a review of the main genetic and geochemical types. International Journal of Coal Geology 76, 253–89.
SY/T 6210-1996. 1996. Oil and Gas Standard of P.R. China: X-ray diffraction quantitative analysis methods of the clay minerals and common non-clay minerals in sedimentary rocks (in Chinese).
Taylor, S. R. & Mclennan, S. M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics 33, 241–65.
Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232, 1232.
Tribovillard, N., Riboulleau, A., Lyons, T. & Baudin, F. 2004. Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales. Chemical Geology 213, 385401.
Wang, J., Tan, F. W., Li, Y. L., Li, Y. T., Chen, M., Wang, C. S., Guo, Z. J., Wang, X. L., Du, B. W. & Zhu, Z. F. 2004. The Potential of the Oil and Gas Resources in Major Sedimentary Basins on the Qinghai–Xizang Plateau, pp. 3438. Beijing: Geological Publishing House (in Chinese with English abstract).
Wang, C. S. & Zhang, S. M. 1987. The discovery of oil shales in the Shuanghu area, northern Tibet, China. Geology in China 8, 2931 (in Chinese).
Wei, H. Y., Chen, D. Z., Wang, J. G., Yu, H. & Tucher, M. E. 2012. Organic accumulation in the lower Chihsia Formation (Middle Permian) of South China: constraints from pyrite morphology and multiple geochemical proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 353–355, 7386.
Westermann, S., Stein, M., Matera, V., Fiet, N., Fleitmann, D., Adatte, T. & Föllmi, K. B. 2013. Rapid changes in the redox conditions of the western Tethys Ocean during the early Aptian oceanic anoxic event. Geochimica et Cosmochimica Acta 121, 467–86.
Ye, L., Cook, N. J., Ciobanu, C. L., Liu, Y. P., Zhang, Q., Liu, T. G., Gao, W., Yang, Y. L. & Danyushevskiy, L. 2011. Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICPMS study. Ore Geology Reviews 39, 188217.
Yeomans, J. C. & Bremner, J. M. 1988. A rapid and precise method for routine determination of organic carbon in soil. Communication in Soil Science and Plant Analysis 19, 1467–76.
Yi, H. S., Chen, L., Jenkyns, H., Da, X. J., Xia, M. Q., Xu, G. W. & Ji, C. J. 2013. The Early Jurassic oil shales in the Qiangtang Basin, northern Tibet: biomarkers and Toarcian oceanic anoxic events. Oil Shale 30, 441–55.
Zhao, L., Ward, C. R., French, D. & Graham, I. T. 2012. Mineralogy of the volcanic-influenced Great Northern coal seam in the Sydney Basin, Australia. International Journal of Coal Geology 94, 94110.
Zhao, Y. C., Zhang, J. Y., Huang, W. C., Wang, Z. H., Li, Y., Song, D. Y., Zhao, F. H. & Zheng, C. G. 2008. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China. Energy Conversion and Management 49, 615–24.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed