Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T17:41:32.726Z Has data issue: false hasContentIssue false

Middle Jurassic rhyolite volcanism of eastern Graham Land, Antarctic Peninsula: age correlations and stratigraphic relationships

Published online by Cambridge University Press:  07 January 2010

TEAL R. RILEY*
Affiliation:
British Antarctic Survey, Natural Envsironment Research Council, Madingley Road, Cambridge, CB3 0ET, UK
MICHAEL J. FLOWERDEW
Affiliation:
British Antarctic Survey, Natural Envsironment Research Council, Madingley Road, Cambridge, CB3 0ET, UK
MORAG A. HUNTER
Affiliation:
British Antarctic Survey, Natural Envsironment Research Council, Madingley Road, Cambridge, CB3 0ET, UK
MARTIN J. WHITEHOUSE
Affiliation:
Swedish Museum of Natural History, Box 50007, Stockholm 104 05, Sweden
*
Author for correspondence: t.riley@bas.ac.uk

Abstract

Silicic volcanism at c. 168 Ma has been identified previously on the Antarctic Peninsula, and the Mapple Formation, which includes those volcanic rocks, has been defined and documented from one area of the east coast of Graham Land. Based on age and geochemical criteria, correlations have been made to the extensive Chon Aike Province of South America, which has been demonstrated to be one of the largest silicic volcanic provinces in the world. Rhyolitic and intermediate composition volcanic successions from six separate localities on the east coast of the Antarctic Peninsula are described here and are confirmed as correlatives of the Mapple Formation, based on newly acquired geochronology and field observations. They are dominantly rhyolitic crystal tuffs and/or ignimbrites with ages in the interval 162–168 Ma, overlapping with the age of the Mapple Formation (167–171 Ma) at the type locality. Andesitic agglomerates are also described, which are included in the same event and demonstrate the occurrence of rare intermediate volcanism, which is also seen in the Chon Aike Province. A new group, the Graham Land Volcanic Group, is defined here, and criteria are established which allow the separation of some volcanic successions out of the previously defined Antarctic Peninsula Volcanic Group, which takes no account of tectonic setting, eruption age or geochemistry.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitkenhead, N. 1975. The geology of the Duse Bay–Larsen Inlet area, north-east Graham Land (with particular reference to the Trinity Peninsula Series). British Antarctic Survey Scientific Reports, no. 51, 62 pp.Google Scholar
Aragón, E., Rodriguez, A. M. I. & Benialgo, A. 1996. A calderas field at the Marifil Formation, new volcanogenic interpretation, Norpatagonian Massif, Argentina. Journal of South American Earth Sciences 9, 321–8.CrossRefGoogle Scholar
Birkenmajer, K. 1992. Trinity Peninsula Group (Permo-Triassic?) at Hope Bay, Antarctic Peninsula. Polish Polar Research 13, 215–40.Google Scholar
Birkenmajer, K. 1993. Jurassic terrestrial clastics (Mount Flora Formation) at Hope Bay, Trinity Peninsula (West Antarctica). Bulletin of the Polish Academy of Sciences, Earth Sciences 41, 2338.Google Scholar
Bryan, S. E., Riley, T. R., Jerram, D. A., Stephens, C. J. & Leat, P. T. 2002. Silicic volcanism: an under-valued component of large igneous provinces/volcanic rifted margins. In Volcanic Rifted Margins (eds Menzies, M. A., Klemperer, S. L., Ebinger, C. J. & Baker, J. A.), pp. 97118. Boulder, Colorado: Geological Society of America, Special Paper no. 363.Google Scholar
del Valle, R. A., Lirio, J. M., Lusky, J. C., Morelli, J. R. & Nunez, H. J. 1997. Jurassic trees at Jason Peninsula, Antarctica. Antarctic Science 9, 443–4.CrossRefGoogle Scholar
Elliot, D. H. 1967. The geology of Joinville Island. British Antarctic Survey Bulletin 12, 2340.Google Scholar
Elliot, D. H. & Gracanin, T. M. 1983. Conglomeratic strata of Mesozoic age at Hope Bay, Antarctic Peninsula. In Antarctic Earth Science (eds Oliver, R. L., James, P. R. & Jago, J. B.), pp. 303–7. Cambridge University Press.Google Scholar
Encarnación, J., Fleming, T. H., Elliot, D. H. & Eales, H. V. 1996. Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana. Geology 24, 535–8.2.3.CO;2>CrossRefGoogle Scholar
Farquharson, G. W. 1983. Evolution of Late Mesozoic sedimentary basins in the northern Antarctic Peninsula. In Antarctic Earth Science (eds Oliver, R. L., James, P. R. & Jago, J. B.), pp. 323–7. Cambridge University Press.Google Scholar
Farquharson, G. W. 1984. Late Mesozoic, non-marine conglomeratic sequences of northern Antarctic Peninsula (The Botany Bay Group). British Antarctic Survey Bulletin 65, 132.Google Scholar
Féraud, G., Alric, V., Fornari, M., Bertrand, H. & Haller, M. 1999. 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism relating to Gondwana break-up and subduction. Earth and Planetary Science Letters 172, 8396.CrossRefGoogle Scholar
Fleet, M. 1968. The geology of the Oscar II Coast, Graham Land. British Antarctic Survey Scientific Reports, no. 59, 46 pp.Google Scholar
Flowerdew, M. J. 2008. On the age and relation between metamorphic gneisses and the Trinity Peninsula Group, Bowman Coast, Graham Land, Antarctica. Antarctic Science 20, 511–12.CrossRefGoogle Scholar
Flowerdew, M. J., Millar, I. L., Vaughan, A. P. M. & Pankhurst, R. J. 2005. Age and tectonic significance of the Lassiter Coast Intrusive Suite, Eastern Ellsworth Land, Antarctic Peninsula. Antarctic Science 17, 443–52.CrossRefGoogle Scholar
Halle, T. G. 1913. The Mesozoic flora of Graham Land. Wissenschaftliche Ergebnisse der Schwedischen Südpolarexpedition 1901–1903, 3.Google Scholar
Hamer, R. D. 1984. The geochemistry and age of the Danger Islands pluton, Antarctic Peninsula. British Antarctic Survey Bulletin 64, 119.Google Scholar
Hathway, B. 2000. Continental rift to back-arc basin: Jurassic–Cretaceous stratigraphical and structural evolution of the Larsen Basin, Antarctic Peninsula. Journal of the Geological Society, London 157, 417–32.CrossRefGoogle Scholar
Hole, M. J., Pankhurst, R. J. & Saunders, A. D. 1991. Geochemical evolution of the Antarctic Peninsula magmatic arc: the importance of mantle–crust interactions during granitoid genesis. In Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.), pp. 369–74. Cambridge University Press.Google Scholar
Hunter, M. A. & Cantrill, D. J. 2006. A new stratigraphy for the Latady Basin, Antarctic Peninsula: Part 2. Latady Group and basin evolution. Geological Magazine 143, 797819.CrossRefGoogle Scholar
Hunter, M. A., Cantrill, D. J., Flowerdew, M. J. & Millar, I. L. 2005. Middle Jurassic age for the Botany Bay Group: implications for Weddell Sea Basin creation and southern hemisphere biostratigraphy. Journal of the Geological Society, London 162, 745–8.CrossRefGoogle Scholar
Hunter, M. A., Riley, T. R., Cantrill, D. J., Flowerdew, M. J. & Millar, I. L. 2006. A new stratigraphy for the Latady Basin, Antarctic Peninsula: Part 1, Ellsworth Land Volcanic Group. Geological Magazine 143, 777–96.CrossRefGoogle Scholar
Leat, P. T. & Scarrow, J. H. 1994. Central volcanoes as sources for the Antarctic Peninsula Volcanic Group. Antarctic Science 6, 365–74.CrossRefGoogle Scholar
Leat, P. T., Scarrow, J. H. & Millar, I. L. 1995. On the Antarctic Peninsula batholith. Geological Magazine 132, 399412.CrossRefGoogle Scholar
Ludwig, K. R. 2003. User manual for isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Centre, Special Publication no. 4, 170.Google Scholar
Millar, I. L., Milne, A. J. & Whitham, A. G. 1990. Implications of Sm–Nd garnet ages for the stratigraphy of northern Graham land, Antarctic Peninsula. Zentralblatt für Geologie und Paläeontologie 1, 97104.Google Scholar
Millar, I. L., Pankhurst, R. J. & Fanning, C. M. 2002. Basement chronology and the Antarctic Peninsula: recurrent magmatism and anatexis in the Palaeozoic Gondwana Margin. Journal of the Geological Society, London 159, 145–58.CrossRefGoogle Scholar
Pankhurst, R. J. 1982. Rb–Sr geochronology of Graham Land, Antarctica. Journal of the Geological Society, London 139, 701–11.CrossRefGoogle Scholar
Pankhurst, R. J., Leat, P. T., Sruoga, P., Rapela, C. W., Márquez, M., Storey, B. C. & Riley, T. R. 1998. The Chon-Aike silicic igneous province of Patagonia and related rocks in Antarctica: a silicic large igneous province. Journal of Volcanology and Geothermal Research 81, 113–36.CrossRefGoogle Scholar
Pankhurst, R. J. & Rapela, C. R. 1995. Production of Jurassic rhyolites by anatexis of the lower crust of Patagonia. Earth and Planetary Science Letters 134, 2336.CrossRefGoogle Scholar
Pankhurst, R. J., Riley, T. R., Fanning, C. M. & Kelley, S. P. 2000. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with break-up of Gondwana. Journal of Petrology 41, 605–25.CrossRefGoogle Scholar
Rapela, C. W., Pankhurst, R. J., Llambías, E. J., Labudía, C. & Artabe, A. 1996. “Gondwana” magmatism of Patagonia: inner Cordilleran calc-alkaline batholiths and bimodal volcanic provinces. 3rd International Symposium on Andean Geodynamics, St. Malo, ORSTOM éditions, Colloques et Séminaires, Paris, Abstracts, 791–4.Google Scholar
Reedman, A. J., Howells, M. F., Orton, G. & Campbell, S. D. G. 1987. The Pitts Head Tuff formation: a subaerial to submarine welded ash-flow tuff of Ordovician age, North Wales. Geological Magazine 124, 427–39.CrossRefGoogle Scholar
Rees, P. M. 1993 a. Revised interpretations of Mesozoic palaeogeography and volcanic arc evolution in the northern Antarctic Peninsula region. Antarctic Science 5, 7785.CrossRefGoogle Scholar
Rees, P. M. 1993 b. Dipterid ferns from the Mesozoic of Antarctica and New Zealand and their stratigraphical significance. Palaeontology 36, 637–56.Google Scholar
Riley, T. R., Crame, J. A., Thomson, M. R. A. & Cantrill, D. J. 1997. Late Jurassic (Kimmeridgian–Tithonian) macrofossil assemblage from Jason Peninsula, Graham Land: evidence for a significant northward extension of the Latady Formation. Antarctic Science 9, 434–42.CrossRefGoogle Scholar
Riley, T. R., Curtis, M. L., Leat, P. T., Watkeys, M. K., Duncan, R. A., Millar, I. L. & Owens, W. H. 2006. Overlap of Karoo and Ferrar magma types in the KwaZulu-Natal region of South Africa. Journal of Petrology 47, 541–66.CrossRefGoogle Scholar
Riley, T. R. & Leat, P. T. 1999. Large volume silicic volcanism along the proto-Pacific margin of Gondwana: lithological and stratigraphical investigations from the Antarctic Peninsula. Geological Magazine 136, 116.CrossRefGoogle Scholar
Riley, T. R., Leat, P. T., Kelley, S. P., Millar, I. L. & Thirlwall, M. F. 2003. Thinning of the Antarctic Peninsula lithosphere through the Mesozoic: evidence from Middle Jurassic basaltic lavas. Lithos 67, 163–79.CrossRefGoogle Scholar
Riley, T. R., Leat, P. T., Pankhurst, R. J. & Harris, C. 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. Journal of Petrology 42, 1043–65.CrossRefGoogle Scholar
Riley, T. R., Millar, I. L., Watkeys, M. K., Curtis, M. L., Leat, P. T., Klausen, M. B. & Fanning, C. M. 2004. U–Pb zircon (SHRIMP) ages for the Lebombo rhyolites, South Africa: refining the duration of Karoo volcanism. Journal of the Geological Society, London 161, 542–5.CrossRefGoogle Scholar
Saunders, A. D. 1982. Petrology and geochemistry of alkali-basalts from Jason Peninsula, Oscar II Coast, Graham Land. British Antarctic Survey Bulletin 55, 19.Google Scholar
Saunders, A. D. & Tarney, J. 1982. Igneous activity in the southern Andes and northern Antarctic Peninsula: a review. Journal of the Geological Society, London 139, 691700.CrossRefGoogle Scholar
Smellie, J. L. 1991. Middle–Late Jurassic volcanism on the Jason Peninsula, Antarctic Peninsula, and its relationship to the break−up of Gondwana. In Gondwana 7 proceedings (eds Ulbrich, H. & Campos, A. C. Rocha), pp. 685–99. Universidade de Sâo Paulo.Google Scholar
Smellie, J. L., Roberts, B. & Hirons, S. R. 1996. Very low- and low-grade metamorphism in the Trinity Peninsula Group (Permo-Triassic) of northern Graham Land, Antarctic Peninsula. Geological Magazine 133, 583–94.CrossRefGoogle Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead evolution by a two-stage model. Earth and Planetary Sciences 26, 207–21.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology; convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Storey, B. C., Alabaster, T., Hole, M. J., Pankhurst, R. J. & Wever, H. E. 1992. Role of subduction plate boundary forces during the initial stages of Gondwana break-up: evidence from the proto-Pacific margin of Antarctica. In Magmatism and the causes of continental break-up (eds Storey, B. C., Alabaster, T. & Pankhurst, R. J.), pp. 149–63. Geological Society of London, Special Publication no. 68.Google Scholar
Thomson, M. R. A. & Pankhurst, R. J. 1983. Age of post-Gondwanian calc-alkaline volcanism in the Antarctic Peninsula region. In Antarctic Earth Science (eds Oliver, R. L., James, P. R. & Jago, J. B.), pp. 328–33. Cambridge University Press.Google Scholar
Vaughan, A. P. M., Pankhurst, R. J. & Fanning, C. M. 2002. A mid-Cretaceous age for the Palmer Land event: implications for terrane accretion timing and Gondwana palaeolatitudes. Journal of the Geological Society, London 159, 113–16.CrossRefGoogle Scholar
Whitehouse, M. J. & Kamber, B. 2005. Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, southwest Greenland. Journal of Petrology 46, 291318.CrossRefGoogle Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meirer, M., Oberli, F., von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter 19, 123.CrossRefGoogle Scholar