Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T17:09:05.928Z Has data issue: false hasContentIssue false

Mafic dykes from Øksfjord, Seiland Igneous Province, northern Norway: geochemistry and palaeotectonic significance

Published online by Cambridge University Press:  01 May 2009

H. Reginiussen
Affiliation:
Department of Geology, IBG, University of Tromsø, N-9037 Tromsø, Norway
E. J. Krogh Ravna
Affiliation:
Department of Geology, IBG, University of Tromsø, N-9037 Tromsø, Norway
K. Berglund
Affiliation:
Department of Geology, IBG, University of Tromsø, N-9037 Tromsø, Norway

Abstract

Mafic dykes from the Øksfjord-Langfjord area were intruded at different stages during the prolonged tectonomagmatic evolution of the Seiland Igneous Province. Field relations, petrography and geochemistry indicate the presence of four dyke generations with alkali basalt composition and one generation of alkaline lamprophyres. The entire dyke suite has geochemical signatures consistent with formation in a within-plate geotectonic environment. Trace elements indicate that the alkali basalt dykes have OIB (ocean island basalt) affinities and we suggest a sublithospheric mantle source. The data support a rift-related origin for the Seiland Igneous Province. Longevity of magmatism in the Seiland Igneous Province (300 m.y.) is difficult to explain within a conventional mantle plume framework. Instead, it is proposed that the intermittent magmatism in the province was predominantly permissive and controlled by lithosphere structure.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akselsen, J., 1982. Precambrian and Caledonian tectonometamorphic evolution of northeastern Seiland, Finnmark, North Norway. Norges Geologiske Undersøkelse 373, 4561.Google Scholar
Allègre, C. J., 1987. Isotope geodynamics. Earth and Planetary Science Letters 86, 175203.CrossRefGoogle Scholar
Andréasson, P. G., 1994. The Baltoscandian margin in Neoproterozoic-early Palaeozoic times. Some constraints on terrane derivation and accretion in the Arctic Scandinavian Caledonides. Tectonophysics 231, 132.CrossRefGoogle Scholar
Bond, G. C., Nickeson, P. A., & Kominz, M. A., 1984. Breakup of a supercontinent between 625 Ma and 555 Ma: new evidence and implications for continental histories. Earth and Planetary Science Letters 70, 325–45.Google Scholar
Brueckner, H. K., 1973. Reconnaissance Rb—Sr investigation of salic, mafic and ultramafic rocks of the Øksfjord area, Seiland province, northern Norway. Norsk Geologisk Tidsskrift 53, 1123.Google Scholar
Cadow, R., 1994. Sm—Nd and Rb—Sr ages of hornblende clinopyroxenite and metagabbro from the Lillebukt Alkaline Complex, Seiland Igneous Province. Norsk Geologisk Tidsskrift 73, 243–9.Google Scholar
Daly, J. S., Aitcheson, S. J., Cliff, R. A., Gayer, R. A., & Rice, A. H. N., 1991. Geochronological evidence from discordant plutons for a late Proterozoic orogen in the Caledonides of Finnmark, northern Norway. Journal of the Geological Society, London 148, 2940.CrossRefGoogle Scholar
Davies, G. F., 1990. Mantle plumes, mantle stirring and hotspot chemistry. Earth and Planetary Science Letters 99, 94109.CrossRefGoogle Scholar
Ellam, R. M., 1992. Lithospheric thickness as a control on basalt geochemistry. Geology 20, 153–6.2.3.CO;2>CrossRefGoogle Scholar
Elvevold, S., & Reginiussen, H., 1995. Retrograde reactions of contact metamorphosed xenoliths during cooling and compression, Seiland Igneous Province, Norwegian Caledonides. Submitted to The European Journal of Mineralogy.Google Scholar
Elvevold, S., Reginiussen, H., Krogh, E. J., & Bjørklund, F., 1994. Reworking of deep-seated gabbros and associated contact metamorphosed paragneisses in the SE-part of the Seiland Igneous Province, northern Norway. Journal of Metamorphic Geology 12, 539–56.CrossRefGoogle Scholar
Fitton, J. G., & Dunlop, H. M., 1985. The Cameroon line, West Africa, and its bearing on the origin of oceanic and continental alkali basalt. Earth and Planetary Science Letters 72, 2338.CrossRefGoogle Scholar
Fitton, J. G., James, D., & Leeman, W. P., 1991. Basic magmatism associated with late Cenozoic extension in the Western United Statesxompositional variations in space and time. Journal of Geophysical Research 96, 13693–711.CrossRefGoogle Scholar
Keppler, H., & Wyllie, P. J., 1990. Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature 348, 531–3.Google Scholar
Krill, A. G., 1989. Further notes on the rift hypothesis for the Seiland Igneous Province. Geologiska Föreningens i Stockholm Förhandlingar 111, 395–8.CrossRefGoogle Scholar
Krill, A. G., & Zwaan, B. K., 1987. Reinterpretation of Finnmarkian deformation on western Sørøy, northern Norway. Norsk Geologisk Tidsskrift 67, 1224.Google Scholar
Krogh, E. J., & Elvevold, S., 1990. A precambrian age for early monzonitic to gabbroic intrusives on the Øksfjord peninsula, Seiland province, northern Norway. Norsk Geologisk Tidsskrift 70, 267–73.Google Scholar
Latin, D. M., Dixon, J. E., & Fitton, J. G., 1990. Rift-related magmatism in the North Sea basin. In Tectonic evolution of the North Sea Rifts (eds Blundell, D. and Gibbs, A.), pp. 101144. Oxford.Google Scholar
McKay, G. A., 1989. Partitioning of rare earth elements between major silicate minerals and basaltic melts. In Geochemistry and mineralogy of rare earth elements (eds Lipin, B. R. and McKay, G. A.), pp. 4577. Reviews in Mineralogy no. 21.CrossRefGoogle Scholar
McKenzie, D., & Bickle, M. J., 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29, 625–79.CrossRefGoogle Scholar
Mørk, M. B. E., & Stabel, A., 1990. Cambrian Sm—Nd dates for an ultramafic intrusion and for high-grade metamorphism on the Øksfjord peninsula, Finnmark, North Norway. Norsk Geologisk Tidsskrift 70, 275–91.Google Scholar
Palacz, Z. A., & Saunders, A. D., 1986. Coupled trace element and isotope enrichment in the Cook-Austral-Samoa islands, southwest Pacific. Earth and Planetary Science Letters 79, 270–80.CrossRefGoogle Scholar
Pearce, J. A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental basalts and mantle xenoliths (eds Hawkesworth, C. J. and Norry, M. J.), pp. 230–49. Nantwich: Shiva.Google Scholar
Pearce, J. A., & Cann, J. R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290300.CrossRefGoogle Scholar
Pedersen, R. B., Dunning, G. R., & Robins, B., 1989. U—Pb ages of nepheline syenite pegmatites from the Seiland Magmatic Province N. Norway. In The Caledonide Geology of Scandinavia (ed. Gayer, R. A.), pp. 38. London: Graham & Trotman.CrossRefGoogle Scholar
Ramsay, D. M., 1971: Stratigraphy of Sørøy. Norges Geologiske Undersøkelse 269, 314–17.Google Scholar
Ramsay, D. M., & Sturt, B. A., 1970. The emplacement and metamorphism of a syn-orogenic dike swarm from Stjernøy, Northwest Norway. American Journal of Science 268, 264–86.CrossRefGoogle Scholar
Ramsay, D. M., Sturt, B. A., Zwaan, K. B., & Roberts, D., 1985. Caledonides of northern Norway. In The Caledonide orogen — Scandinavia and related areas (eds Gee, D. G. and Sturt, B. A.), pp. 163–94. London: John Wiley.Google Scholar
Roberts, D., 1974. Hammerfest. Beskrivelse til det 1:250000 berggrunnsgeologiske kart. Norges Geologiske Undersøkelse 301, 161.Google Scholar
Roberts, D., 1990. Geochemistry of mafic dykes in the Corrovarre Nappe, Troms, North Norway. Norges Geologiske Undersøkelse Bulletin 419, 4553.Google Scholar
Robins, B., Gading, M., Yurdakul, M., & Aitcheson, S. J., 1991. The origin of macrorhythmic units in the Lower Zone of the Lille Kufjord Intrusion, northern Norway. Norges Geologiske Undersøkelse Bulletin 420, 1350.Google Scholar
Robins, B., & Gardner, P. M., 1974. Synorogenic layered basic intrusions in the Seiland petrographic province, Finnmark. Norges Geologiske Undersøkelse 312, 91130.Google Scholar
Robins, B., & Gardner, P. M., 1975. The magmatic evolution of the Seiland province, and Caledonian plate boundaries in northern Norway. Earth and Planetary Science Letters 26, 167–78.CrossRefGoogle Scholar
Robins, B., & Takla, M. A., 1979. Geology and geochemistry of a metamorphosed picrite-ankaramite dyke suite from the Seiland province, northern Norway. Norsk Geologisk Tidsskrift 59, 6795.Google Scholar
Rock, N. M. S., 1987. The nature and origin of lamprophyres:an overview. In Alkaline Igneous Rocks (eds Fitton, J. G. and Upton, B. G. J.), pp. 191226. Geological Society Special Publication no. 30.Google Scholar
Rock, N. M. S., 1991. Lamprophyres. Glasgow: Blackie, 285 pp.Google Scholar
Ryerson, F. J., & Hess, P. C., 1978. Implications of liquid—liquid distribution coefficients to mineral—liquid partitioning. Geochimica et Cosmochimica Ada 42, 921–21.CrossRefGoogle Scholar
Sleep, N. H., 1992. Hotspot volcanism and mantle plumes. Annual Review of Earth and Planetary Sciences 20, 1943.CrossRefGoogle Scholar
Snow, J., Bennett, M. C., Yeo, W. A., Basu, A. R., & Tatsumoto, M., 1986. The Melkvann Complex N. Norway: Nd and Sr isotopic evidence for the origin of Alaskan-type ultramafic complexes. Terra Cognita 6, 2, 184.Google Scholar
Sturt, B. A., Pringle, I. R., & Ramsay, D. M., 1978. The Finnmarkian phase of the Caledonian orogeny. Journal of the Geological Society, London 135, 597610.CrossRefGoogle Scholar
Sun, S-S., & McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. and Norry, M. J.), pp. 313–45. Geological Society Special Publication no. 42.Google Scholar
Weaver, B. L., 1991. The origin of ocean island basalt endmember compositions: trace element and isotopic constraints. Earth and Planetary Science Letters 104, 381–97.CrossRefGoogle Scholar
Weaver, B. L., Wood, D. A., Tarney, J., & Joron, J. L., 1987. Geochemistry of ocean island basalts from the South Atlantic: Ascension, Bouvet, St. Helena, Gough and Tristan da Cunha. In Alkaline Igneous Rocks (eds Fitton, J. G. and Upton, B. G. J.), pp. 253–67. Geological Society Special Publication no. 30.Google Scholar
White, R., & McKenzie, D., 1989. Magmatism at rift zones:the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research 94, 7685–729.CrossRefGoogle Scholar
Wilson, M., 1993. Geochemical signatures of oceanic and continental basalts: a key to mantle dynamics? Journal of the Geological Society, London 150, 977–90.CrossRefGoogle Scholar
Winchester, J. A., & Floyd, P. A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Wood, D. A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters 50, 1130.CrossRefGoogle Scholar
Zindler, A., & Hart, S. R., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493571.CrossRefGoogle Scholar
Zwaan, B. K., & Van Roermund, H. L. M., 1990. A rift-related mafic dyke swarm in the Corrovarre Nappe of the Caledonian Middle Allochthon, Troms, North Norway, and its tectonometamorphic evolution. Norges Geologiske Undersøkelse Bulletin 419, 2544.Google Scholar