Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-19T09:42:54.728Z Has data issue: false hasContentIssue false

High-resolution C-isotope chemostratigraphy of the uppermost Cambrian stage (Stage 10) in South China: implications for defining the base of Stage 10 and palaeoenvironmental change

Published online by Cambridge University Press:  17 April 2017

DANDAN LI
Affiliation:
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
XIAOLIN ZHANG*
Affiliation:
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
KEFAN CHEN
Affiliation:
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
GUIJIE ZHANG
Affiliation:
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
XIAOYAN CHEN
Affiliation:
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
WEI HUANG
Affiliation:
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
SHANCHI PENG
Affiliation:
LPS, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
YANAN SHEN
Affiliation:
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
*
Author for correspondence: zhxl2012@ustc.edu.cn

Abstract

The Wa'ergang section in South China has been proposed as a potential Global Stratotype Section and Point (GSSP) for the base of Stage 10, the uppermost stage of the Cambrian System. In this study, high-resolution C-isotopic compositions are reported and we identified three large negative δ13C excursions, namely N1, N2 and N3, at Wa'ergang. The N1 is located just above the First Appearance Datum (FAD) of Lotagnostus americanus, corresponding to the possible base of the Proconodontus posterocostatus conodont Zone. The N2 was identified within the Micragnostus chuishuensis trilobite Zone and the Proconodontus muelleri conodont Zone. The N3 is located in the lowermost part of the Leiagnostus cf. bexelli – Archaeuloma taoyuanense trilobite Zone or Eoconodontus conodont Zone. The N1 and N2 can be correlated with the negative δ13C excursions preceding the Top of Cambrian Carbon Isotope Excursion (TOCE) observed globally. The N3 can be correlated with the TOCE or the HEllnmaria–Red Tops Boundary (HERB) Event. The inter-basinal correlation of N1 and L. americanus strongly supports that the base of Stage 10 may be best defined by the FAD of L. americanus. We also used a box model to quantitatively explore the genesis of the negative δ13C excursions from South China. Our numerical simulations suggest that weathering of the organic-rich sediments on the platform, probably driven by intermittent sea level fall and/or the oxygenation of the Dissolved Organic Carbon (DOC) reservoir in seawater, may have contributed to the generation of the negative δ13C excursions observed in the Stage 10 at Wa'ergang in South China.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J. R. & Matthews, R. K. 1982. Isotope signatures associated with early meteoric diagenesis. Sedimentology 29, 797817.Google Scholar
Álvaro, J. J., Ferretti, A., González-Gómez, C., Serpagli, E., Tortello, M. F., Vecoli, M. & Vizcaïno, D. 2007. A review of the Late Cambrian (Furongian) palaeogeography in the western Mediterranean region, NW Gondwana. Earth-Science Reviews 85, 4781.CrossRefGoogle Scholar
Babcock, L. E., Ahlberg, P., Peng, S., Terfelt, F. & Eriksson, M. E. 2012. Morphologic variation, taphonomy and biostratigraphic range of the agnostoid Lotagnostus (Cambrian: Furongian) from Sweden. Journal of Guizhou University (Natural Sciences) 29 (Suppl. 1), 154–5.Google Scholar
Babcock, L. E., Peng, S., Brett, C. E., Zhu, M., Ahlberg, P., Bevis, M. & Robison, R. A. 2015. Global climate, sea level cycles, and biotic events in the Cambrian Period. Palaeoworld 24, 515.Google Scholar
Bagnoli, G., Peng, S., Qi, Y. & Wang, C. 2017. Conodonts from the Wa'ergang section, China, a potential GSSP for the uppermost stage of the Cambrian. Revista Italiana di Paleontologia e Stratigrafia 123, 110.Google Scholar
Bambach, R., Knoll, A. H. & Wang, S. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30, 522–42.Google Scholar
Bathurst, R. G. C. 1975. Carbonate Sediments and their Diagenesis, 2nd Edition. Amsterdam: Elsevier, 658 pp.Google Scholar
Billings, E. 1860. On some new species of fossils from the limestone near Point Levi, opposite Quebec. Canadian Naturalist and Geologist 5, 301–24.Google Scholar
Buggisch, W., Keller, M. & Lehnert, O. 2003. Carbon isotope record of Late Cambrian to Early Ordovician carbonates of the Argentine Precordillera. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 357–73.CrossRefGoogle Scholar
Dong, X., Repetski, J. E. & Bergström, S. M. 2004. Conodont biostratigraphy of the Middle Cambrian through lowermost Ordovician in Hunan, South China. Acta Geologica Sinica 78, 1185–260.Google Scholar
Ergaliev, G. K. 1983. Some trilobites from the Upper Cambrian and Lower Ordovician of the Greater Karatau and Ulutau. In The Lower Palaeozoic Stratigraphy and Palaeontology of Kazakhstan (eds Apollonov, M. K., Bandeletov, S. M. & Ivshin, N. K.), pp. 3566. Alma-Ata, Kazakhstan: Science Press.Google Scholar
Finney, S. C. 2007. The parautochthonous Gondwanan origin of the Cuyania (greater Precordillera) terrane of Argentina: a re-evaluation of evidence used to support an allochthonous Laurentian origin. Geologica Acta 5, 127–58.Google Scholar
Gill, B. C., Lyons, T. W., Young, S. A., Kump, L. R., Knoll, A. H. & Saltzman, M. R. 2011. Geochemical evidence for widespread euxinia in the later Cambrian ocean. Nature 469, 80–3.CrossRefGoogle ScholarPubMed
Holser, T. W. 1997. Geochemical events documented in inorganic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 173–82.Google Scholar
Jing, X., Deng, S., Zhao, Z., Lu, Y. & Zhang, S. 2008. Carbon isotope composition and correlation across the Cambrian–Ordovician boundary in Kalpin Region of the Tarim Basin, China. Science in China Series D: Earth Science 51, 1317–29.CrossRefGoogle Scholar
Kouchinsky, A., Bengtson, S., Gallet, Y., Korovnikov, I., Pavlov, V., Runnegar, B., Shields, G., Veizer, J., Young, E. & Ziegler, K. 2008. The SPICE carbon isotope excursion in Siberia: a combined study of the upper Middle Cambrian–lowermost Ordovician Kulyumbe River section, northwestern Siberian Platform. Geological Magazine 145, 609–22.Google Scholar
Kump, L. R. & Arthur, M. A. 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chemical Geology 161, 181–98.CrossRefGoogle Scholar
Landing, E., Westrop, S. R. & Adrain, J. M. 2011. The Lawsonian Stage – the Eoconodontus notchpeakensis (Miller, 1969) FAD and HERB carbon isotope excursion define a globally correlatable terminal Cambrian stage. Bulletin of Geosciences 86, 621–40.CrossRefGoogle Scholar
Lazarenko, N. P., Gogin, I. Y., Pegel, T. V. & Abaimova, G. P. 2011. The Khos-Nelege River section of the Ogon'or Formation: a potential candidate for the GSSP of Stage 10, Cambrian System. Bulletin of Geosciences 86, 555–68.Google Scholar
Lazarenko, N. P., Gogin, I. Ya., Pegel, T. V., Sukhov, S. S., Abaimova, G. P., Egorova, L. I., Fedorov, A. B., Raevskaya, E. G. & Ushatinskaya, G. T. 2008 a. Excursion 1b. Cambrian stratigraphy of the northeastern Siberian Platform and potential stratotype of lower boundaries of proposed Upper Cambrian Chekurovkian and Nelegerian stages in the Ogon'or Formation section at the Khos-Nelege River; the boundaries are defined by the FAD of Agnostotes orientalis and Lotagnostus americanus . In The Cambrian System of the Siberian Platform, Part 2: North-East of the Siberian Platform (eds Rozanov, A. Y. & Varlamov, A. I.), pp. 61139. Moskva & Novosibirsk: PIN RAS.Google Scholar
Lazarenko, N. P., Pegel, T. V., Sukhov, S. S., Abaimova, G. P. & Gogin, I. Y. 2008 b. Type section of Upper Cambrian of Siberian Platform – candidate of stage stratotype of International Stratigraphic Scale. In Cambrian Sections of Siberian Platform – Candidates of Stratotype Subdividing International Stratigraphic Scale (Stratigraphy and Paleontology); Material for 13th International Field Conference of Cambrian Stage Subdivision Working Group (ed. Budnikov, I. V.), pp. 358. Novosibirsk: Press of Siberian Branch RAN.Google Scholar
Lehnert, O., Miller, J. F., Leslie, S. A., Repetski, J. E. & Ethington, R. L. 2005. Cambrian–Ordovician sea-level fluctuations and sequence boundaries: the missing record and the evolution of new taxa. Palaeontology 73, 117–34.Google Scholar
Lin, T. 1991. Middle Cambrian stratigraphy and trilobite fauna of Taoyuan, NW Hunan. Acta Palaeontologica Sinica 30, 360–76.Google Scholar
Lu, Y. & Lin, H. 1984. Late Cambrian and earliest Ordovician trilobites of Jiangshan–Changshan area, Zhejiang. In Stratigraphy and Palaeontology of Systemic Boundaries in China, Cambrian and Ordovician Boundary (1) (ed. Nanjing Institute of Geology and Palaeontology, Academia Sinica), pp. 45143. Hefei, China: Anhui Science and Technology Publishing House.Google Scholar
Lu, Y. & Lin, H. 1989. The Cambrian trilobites of western Zhejiang. Palaeontologia Sinica 25, 1287.Google Scholar
Ludvigsen, R., Westrop, S. R. & Kindle, C. H. 1989. Sunwaptan (Upper Cambrian) trilobites of the Cow Head Group, western Newfoundland, Canada. Palaeontographica Canadiana 6, 1175.Google Scholar
Maloof, A. C., Porter, S. M., Moore, J. L., Dudás, F. Ö., Bowring, S. A., Higgins, J. A., Fike, D. A. & Eddy, M. P. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122, 1731–74.Google Scholar
Miller, J. F. 1969. Conodonts from the Notch Peak Limestone (Cambro-Ordovician), House Range, Utah. Journal of Paleontology 43, 413–39.Google Scholar
Miller, J. F. 1992. The Lange Ranch eustatic event: a regressive–transgressive couplet near the base of the Ordovician System. In Global Perspectives on Ordovician Geology (eds Webby, B. D. & Laurie, J. R.), pp. 395407. Rotterdam: Balkema.Google Scholar
Miller, J. F., Ethington, R. L., Evans, K. R., Holmer, L. E., Loch, J. D., Popov, L. E., Repetski, J. E., Ripperdan, R. L. & Taylor, J. F. 2006. Proposed stratotype for the base of the highest Cambrian stage at the first appearance datum of Cordylodus andresi, Lawson Cove section, Utah, USA. Palaeoworld 15, 385405.Google Scholar
Miller, J. F., Evans, K. R., Ethington, R. L., Freeman, R. L., Loch, J. D., Popov, L. E., Repetski, J. E., Ripperdan, R. L. & Taylor, J. F. 2015 a. Proposed Auxiliary Boundary Stratigraphic Section and Point (ASSP) for the base of the Ordovician System at Lawson Cove, Utah, USA. Stratigraphy 12, 219–36.Google Scholar
Miller, J. F., Evans, K. R., Freeman, R. L., Ripperdan, R. L. & Taylor, J. F. 2011. Proposed stratotype for the base of the Lawsonian Stage (Cambrian Stage 10) at the First Appearance Datum of Eoconodontus notchpeakensis (Miller) in the House Range, Utah, USA. Bulletin of Geosciences 86, 595620.Google Scholar
Miller, J. F., Ripperdan, R. L., Loch, J. D., Freeman, R. L., Evans, K. R., Taylor, J. F. & Tolbart, Z. C. 2015 b. Proposed GSSP for the base of Cambrian Stage 10 at the lowest occurrence of Eoconodontus notchpeakensis in the House Range, Utah, USA. Annales de Paléontologie 101, 199211.Google Scholar
Peng, S. 1984. Cambrian–Ordovician boundary in the Cili-Taoyuan border area, northwestern Hunan with description of relative trilobites. In Stratigraphy and Palaeontology of Systemic Boundaries in China, Cambrian and Ordovician Boundary (1) (ed. Nanjing Institute of Geology and Palaeontology, Academia Sinica), pp. 285405. Hefei, China: Anhui Science and Technology Publishing House.Google Scholar
Peng, S. 1987. Early Late Cambrian stratigraphy and trilobite fauna of Taoyuan and Cili, Hunnan. In Collection of Postgraduate Theses (1) (ed. Nanjing Institute of Geology and Palaeontology, Academia Sinica), pp. 53134. Nanjing, China: Jiangsu Science and Technology Publishing House.Google Scholar
Peng, S. 1990 a. Upper Cambrian in the Cili–Taoyuan Area, Hunan and its trilobite succession. Journal of Stratigraphy 14, 261–76.Google Scholar
Peng, S. 1990 b. Tremadoc stratigraphy and trilobite fauna of northwestern Hunan. 2, Trilobites from the Panjiazui Formation and the Madaoyu Formation in the Jiangnan Slope Belt. Beringeria 2, 55171.Google Scholar
Peng, S. 1992. Upper Cambrian biostratigraphy and trilobite faunas of Cili–Taoyuan area, northwestern Hunan, China. Memoirs of the Association of Australasian Palaeontologists 13, 1119.Google Scholar
Peng, S. & Babcock, L.E. 2005. Two Cambrian agnostoid trilobites, Agnostotes orientalis (Kobayashi, 1935) and Lotagnostus americanus (Billings, 1860): key species for defining global stages of the Cambrian System. Geoscience Journal 9, 107–15.CrossRefGoogle Scholar
Peng, S., Babcock, L. E. & Ahlberg, P. 2012. Morphologic variation of Lotagnostus americanus from China and Russia. Journal of Guizhou University (Natural Sciences) 29 (Suppl. 1), 182–3.Google Scholar
Peng, S., Babcock, L. E. & Cooper, R. A. 2012. The Cambrian Period. In The Geologic Time Scale 2012 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G.), pp. 437–88. Oxford, UK: Elsevier.Google Scholar
Peng, S., Babcock, L. E., Lin, H. & Chen, Y. 2001. Cambrian and Ordovician stratigraphy at Wa'ergang, Hunan Province, China: bases of the Wa'ergangian and Taoyuanian stages of the Cambrian System. Palaeoworld 13, 132–50.Google Scholar
Peng, S., Babcock, L. E., Zhu, X., Ahlberg, P., Terfelt, F. & Dai, T. 2015. Intraspecific variation and taphonomic alteration in the Cambrian (Furongian) agnostoid Lotagnostus americanus: new information from China. Bulletin of Geosciences 90, 281306.Google Scholar
Peng, S., Babcock, L. E., Zhu, X., Zuo, J. & Dai, T. 2014. A potential GSSP for the base of the uppermost Cambrian stage, coinciding with the first appearance of Lotagnostus americanus at Wa'ergang, Hunan, China. GFF 136, 208–13.Google Scholar
Peng, S., Babcock, L. E., Zuo, J., Lin, H., Zhu, X., Yang, X., Qi, Y., Gabriella, B. & Wang, L. 2009. Proposed GSSP for the base of Cambrian Stage 9, coinciding with the first appearance of Agnostotes orientalis, at Duibian, Zhejiang, China. Science China Series D – Earth Sciences 52, 434–51.Google Scholar
Ripperdan, R. L. 2002. The HERB Event: end of Cambrian carbon cycle paradigm? Geological Society of America, Abstracts with Programs 34, 413.Google Scholar
Ripperdan, R. L., Magarita, M. & Kirschvink, J. L. 1993. Carbon isotope and magnetic polarity evidence for non-depositional events within the Cambrian–Ordovician boundary section at Dayangcha, Jilin Province, China. Geological Magazine 130, 443–52.Google Scholar
Ripperdan, R. L., Magaritz, M., Nicoll, R. S. & Shergold, J. S. 1992. Simultaneous changes in carbon isotopes, sea level, and conodont biozones within the Cambrian–Ordovician boundary interval at Black Mountain, Australia. Geology 20, 1039–42.Google Scholar
Ripperdan, R. L. & Miller, J. F. 1995. Carbon isotope ratios from the Cambrian–Ordovician boundary section at Lawson Cove, Ibex area, Utah. In Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System (eds Cooper, J. D., Droser, M. L., Finney, S. C.), pp. 129–32. Fullerton, California: Pacific Section SEPM.Google Scholar
Rothman, D. H., Hayes, J. M. & Summons, R. E. 2003. Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences of the United States of America 100, 8124–9.Google Scholar
Saltzman, M. R., Brasier, M. D., Ripperdan, R. L., Ergaliev, G. K., Lohmann, K. C., Robison, R. A., Chang, W. T., Peng, S. & Runnegar, B. 2000. A global carbon isotope excursion during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeography, Palaeoceanography, Palaeoclimatology 162, 211–23.Google Scholar
Saltzman, M. R., Edwards, C. T., Adrain, J. M. & Westrop, S. R. 2015. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology 43, 807–10.Google Scholar
Saltzman, M. R., Young, S. A., Kump, L. R., Gill, B. C., Lyons, T. W. & Runnegar, B. 2011. A pulse of atmospheric oxygen during the late Cambrian. Proceedings of the National Academy of Sciences of the United States of America 108, 3876–81.Google Scholar
Shen, Y. & Schidlowski, M. 2000. New C isotope stratigraphy from southwest China: implications for the placement of the Precambrian–Cambrian boundary on the Yangtze Platform and global correlations. Geology 28, 623–6.Google Scholar
Shergold, J. H., Bordonaro, O. & Liñán, E. 1995. Late Cambrian agnostoid trilobites from Argentina. Palaeontology 38, 241–57.Google Scholar
Sial, A.N., Peralta, S., Ferreira, V. P., Toselli, A. J., Aceñolaza, F. G., Parada, M. A., Gaucher, C., Alonso, R. N. & Pimentel, M. M. 2008. Upper Cambrian carbonate sequences of the Argentine Precordillera and the Steptoean C-Isotope positive excursion (SPICE). Gondwana Research 13, 437–52.Google Scholar
Sial, A. N., Peralta, S., Gaucher, C., Toselli, A. J., Ferreira, V. P., Frei, R., Parada, M. A., Pimentel, M. M. & Pereira, N. S. 2013. High-resolution stable isotope stratigraphy of the upper Cambrian and Ordovician in the Argentine Precordillera: carbon isotope excursions and correlations. Gondwana Research 24, 330–48.Google Scholar
Taylor, M. E. & Cook, H. E. 1976. Continental shelf and slope facies of the Upper Cambrian and lowest Ordovician of Nevada. Brigham Young University Geology Studies 23, 181214.Google Scholar
Taylor, J. F., Myrow, P. M., Ripperdan, R. L., Loch, J. D. & Ethington, R. L. 2004. Paleoceanographic events and faunal crises recorded in the Upper Cambrian and Lower Ordovician of west Texas and southern New Mexico. In Field Trips in the Southern Rocky Mountains, USA (eds Nelson, E. P. & Erslev, E. A.), pp. 169–85. Geological Society of America Field Guide 5.Google Scholar
Terfelt, F., Ahlberg, P. & Eriksson, M. E. 2011. Complete record of Furongian polymerid trilobites and agnostoids of Scandinavia – a biostratigraphical scheme. Lethaia 44, 814.Google Scholar
Terfelt, F., Eriksson, M. E., Ahlberg, P. & Babcock, L. E. 2008. Furongian Series (Cambrian) biostratigraphy of Scandinavia – a revision. Norwegian Journal of Geology 88, 7387.Google Scholar
Terfelt, F., Eriksson, M. E. & Schmitz, B. 2014. The Cambrian–Ordovician transition in dysoxic facies in Baltica — diverse faunas and carbon isotope anomalies. Palaeogeography, Palaeoclimatology, Palaeoecology 394, 5973.Google Scholar
Westrop, S. R., Adrain, J. M. & Landing, E. 2011. Cambrian (Sunwaptan, Furongian) agnostoid arthropod Lotagnostus Whitehouse, 1936 in Laurentian and Avalonian North America: systematics and biostratigraphic significance. Bulletin of Geosciences 86, 569–94.CrossRefGoogle Scholar
Xiang, L. & Zhang, T. 1985. Stratigraphy and trilobite faunas of the Cambrian in the western part of northern Tianshan, Xinjiang. Ministry of Geology and Mineral Resources, Geological Memoirs 4, 1243.Google Scholar
Zhang, J., Wang, H. & Li, G. 2000. Redescription of the Dayangcha section as a candidate for the global Cambrian–Ordovician boundary stratotype, Jilin Province, China. Journal of Stratigraphy 24 (Suppl.), 359–69 (in Chinese with English introduction).Google Scholar