Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T01:31:56.784Z Has data issue: false hasContentIssue false

Guadalupian cool versus warm water deposits in central Iran: a record of the Capitanian Kamura event

Published online by Cambridge University Press:  26 October 2017

SAKINEH AREFIFARD*
Affiliation:
Department of Geology, Faculty of Sciences, Lorestan University, Khorramabad, Lorestan, 68151-44316, Iran
*
*Author for correspondence: sarefifard@gmail.com

Abstract

An integration of geochemical and grain association studies were carried out on Middle Permian deposits in central Iran where both cool and warm water carbonates are found. The recrystallization of most bioclasts, lime-mud matrix and ooids along with high Sr contents suggests a probable original aragonite mineralogy for carbonates of the Middle Permian Jamal Formation at the Shotori section. Low bulk carbonate δ18O values imply pervasive diagenetic alteration in this section. Conversely, Middle Permian deposits at the correlative Bagh-e Vang section have a probable calcite precursor supported by low Sr contents and no evidence of recrystallization. This mineralogical variation in these coeval carbonates is considered to be due to the change in depth and temperature of the depositional palaeoenvironment. δ13C values started to rise over 2 ‰ PDB and reached a maximum of 4.3 ‰ PDB at the Wordian–Capitanian boundary at the Bagh-e Vang section. This δ13C rise is attributed to high primary productivity as previously reported in the Capitanian Abadeh Formation in central Iran. The positive δ13C excursion in these sections is correlated with the Capitanian ‘Kamura event’ identified from the mid-Panthalassian sections in Japan. No noticeable positive excursion occurs in the δ13C plot at the Shotori section making the interpretation of palaeo-productivity difficult. It is suggested that an active oceanic upwelling was the probable driver of the Middle Permian oceanic productivity in central Iran. Remarkable negative δ13C excursions around 3.7 and 4.2 ‰ PDB in Capitanian carbonates close to the Guadalupian–Lopingian boundary at the Bagh-e Vang and Abadeh sections, respectively are recorded, which are a proxy for low palaeo-productivity and a transition from a cool to warm climate, consistent with an early Lopingian sea level rise.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adabi, M. H. 2004. A re-evaluation of aragonite versus calcite seas. Carbonates and Evaporites 19, 133–41.Google Scholar
Adabi, M. H. & Asadi Mehmandosti, E. 2008. Microfacies and geochemistry of the Ilam Formation in the Tang-e Rashid area, Izeh, S.W. Iran. Journal of Asian Earth Sciences 33, 267–77.Google Scholar
Adabi, M. H. & Rao, C. P. 1991. Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran. Sedimentary Geology 72, 253–67.Google Scholar
Adabi, M. H. & Rao, C. P. 1996. Petrographic, elemental and isotopic criteria for the recognition of carbonate mineralogy and climates during the Jurassic (examples from Iran and England). In 13th Geological Convention, Australia, Abstracts, p. 6.Google Scholar
Angiolini, L., Gaetani, M., Muttoni, G., Stephenson, M. H. & Zanchi, A. 2007. Tethyan oceanic currents and climate gradients 300 my ago. Geology 35, 1071–4.Google Scholar
Arefifard, S. 2017. Sea level drop, palaeoenvironmental change and related biotic responses across Guadalupian–Lopingian boundary in southwest, North and Central Iran. Geological Magazine, published online 25 January 2017. doi: 10.1017/S0016756816001199.Google Scholar
Arefifard, S., Adabi, M. H., Khosrow Tehrani, K., Shemirani, A., Aghanabati, A. & Davydov, V. 2006. Permian fusulinids from Kalmard and Tabas area (east central Iran). Iranian Geosciences Journal 1, 145.Google Scholar
Arefifard, S. & Davydov, V. I. 2004. Permian in Kalmard, Shotori and Shirgesht areas, eastern-central Iran. Permophiles 44, 2832.Google Scholar
Arefifard, S. & Isaacson, P. E. 2011. Permian sequence stratigraphy in east-central Iran: microplate records of Peri-Tethyan and Peri-Gondwanan events. Stratigraphy 8, 6183.Google Scholar
Balini, M., Mandrioli, R., Nicora, A., Angiolini, L., Vuolo, I., Sohrabi, Z. & Bahramanesh, M. 2015. First report of Upper Pennsylvanian ammonoids and Lower Permian conodonts from Bagh-e-Vang area (Central Iran). Permophiles 62, 2537.Google Scholar
Beauchamp, B. & Baud, A. 2002. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology 187, 3763.Google Scholar
Berner, R. A. 1990. Atmospheric carbon dioxide level over Phanerozoic time. Science 155, 1382–6.Google Scholar
Bond, D. P. G., Wignall, P. B., Wang, W., Izon, G., Jiang, H.-S., Lai, X.-L., Sun, Y.-D., Newton, R. J., Shao, L.-Y., Védrine, S. & Cope, H. 2010. The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 292, 282–94.Google Scholar
Brand, U. & Veizer, J. 1980. Chemical diagenesis of a multicomponent carbonate system, 1. trace elements. Journal of Sedimentary Petrology 50, 1219–36.Google Scholar
Carpenter, S. J. & Lohmann, K. 1992. Sr /Mg ratios of modern marine calcite: empirical indicators of ocean chemistry and precipitation rate. Geochemica et Cosmochemica Acta 56, 1837–49.Google Scholar
Chen, B., Joachimski, M. M., Sun, Y. D., Shen, S. Z. & Lai, X. L., 2011. Carbon and conodont apatite oxygen isotope records of Guadalupian–Lopingian boundary sections: climatic or sea-level signal? Palaeogeography, Palaeoclimatology, Palaeoecology 311, 145–53.Google Scholar
Demicco, R. V., Lowenstein, T. K., Hardie, L. A. & Spencer, R. J. 2005. Model of seawater composition for the Phanerozoic. Geology 33, 877–80.Google Scholar
Dercourt, J., Ricou, L. E. & Vrielynck, B. 1993. Atlas Tethys Palaeoenvironmental Maps. Paris: Gauthier-Villars, 307 pp.Google Scholar
Flügel, E. 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, 2nd ed. Berlin: Springer-Verlag, 984 pp.Google Scholar
Gonzalez, L. A. & Lohmann, K. C. 1985. Carbon and oxygen isotopic composition of Holocene reefal carbonates. Geology 13, 811–4.Google Scholar
Grossman, E. L. 2012. Applying oxygen isotope paleothermometry in deep time. In Reconstructing Earth's Deep-Time Climate – The State of the Art in 2012, Paleontological Society Short Course (eds Ivany, L. C. & Huber, B. T.), pp. 3967. The Paleontological Society Papers 18.Google Scholar
Grossman, E. L. & Ku, T.-L. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology (Isotope Geoscience Section) 59, 5974.Google Scholar
Haq, B. U. & Schutter, S. R. 2008. A chronology of Palaeozoic sea-level changes. Science 322, 64–8.Google Scholar
Hardie, L. A. 1996. Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24, 279–83.Google Scholar
He, B., Xu, Y.-G., Huang, X-.L., Luo, Z.-Y., Shi, Y.-R., Yang, Q.-J. & Yu, S.-Y. 2007. Age and duration of the Emeishan flood volcanism, SW China: geochemistry and SHRIMP zircon U–Pb dating of the silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters 255, 306–23.Google Scholar
He, B., Xu, Y.-G., Zhong, Y.-T. & Guan, J.-P. 2010. The Guadalupian–Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism. Lithos 119, 1019.Google Scholar
Heydari, E., Hassandzadeh, J. & Wade, W. J. 2000. Geochemistry of central Tethyan Upper Permian and Lower Triassic strata, Abadeh region, Iran. Sedimentary Geology 137, 8599.Google Scholar
Hood, S. D., Nelson, C. S. & Kamp, P. J. J. 2004. Discriminating cool-water from warm-water carbonates and their diagenetic environments using element geochemistry: the Oligocene Tikorangi Formation (Taranaki Basin) and the dolomite effect. New Zealand Journal of Geology and Geophysics 47, 857–69.Google Scholar
Hover, V. C., Walter, L. M. & Peacor, D. R. 2001. Early marine diagenesis of biogenic aragonite and Mg-calcite: new constraints from high-resolution STEM and AEM analyses of modern platform carbonates. Chemical Geology 175, 22248.Google Scholar
Iranian-Japanese Research Group. 1981. The Permian and the Lower Triassic Systems in Abadeh region, Central Iran. Memoirs of the Faculty of Science, Kyoto University, Series Geology and Mineralogy 47, 61133.Google Scholar
Isozaki, Y. 2009. Integrated plume winter scenario for the double-phased extinction during the Paleozoic–Mesozoic transition: G–LB and P–TB events from a Panthalassan perspective. Journal of Asian Earth Sciences 36, 459–80.Google Scholar
Isozaki, Y., Aljinović, D. & Kawahata, H. 2011. The Guadalupian (Permian) Kamura event in European Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 1221.Google Scholar
Isozaki, Y., Kawahata, H. & Minoshima, K. 2007. The Capitanian (Permian) Kamura Cooling Event: the beginning of the Paleozoic–Mesozoic transition. Palaeoworld 16, 1630.Google Scholar
Isozaki, Y., Kawahata, H. & Ota, A. 2007. A unique carbon isotope record across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic paleoatoll carbonates: the high-productivity “Kamura event” and its collapse in Panthalassa. Global Planetary Change 55, 2138.Google Scholar
Johnson, E. A. 2005. Geologic Assessment of Undiscovered Oil and Gas Resources in the Phosphoria Total Petroleum System, Southwestern Wyoming Province, Wyoming, Colorado, and Utah. U.S. Geological Survey Digital Data Series DDS-69-D, 51 pp.Google Scholar
Jost, A. B., Mundil, R., He, B., Brown, S. T., Altiner, D., Sun, Y., DePaolo, D. J. & Payne, J. L. 2014. Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes. Earth and Planetary Science Letters 396, 201–12.Google Scholar
Kaiho, K., Chen, Z.-Q., Ohashi, T., Arinobu, T., Sawada, K. & Cramer, B. S. 2005. A negative carbon isotope anomaly associated with the earliest Lopingian (Late Permian) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 223, 172–80.Google Scholar
Kametaka, M., Takebe, M., Nagai, H., Zhu, S. & Takayanagi, Y. 2005. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation: a continental shelf radiolarian chert. Sedimentary Geology 174, 197222.Google Scholar
Kani, T., Fukui, M., Isozaki, Y. & Nohda, S. 2008. The Paleozoic minimum of 87Sr/86Sr ratio in the Capitanian (Permian) mid-oceanic carbonates: a critical turning point in the Late Paleozoic. Journal of Asian Earth Science 32, 2233.Google Scholar
Kinsman, D. J. J. 1969. Interpretation of Sr2+ concentration in carbonate minerals and rocks. Journal of Sedimentary Research 39, 485508.Google Scholar
Kobayashi, F. & Ishii, K.-I. 2003. Permian fusulinacean of the Surmaq Formation in the Abadeh region, central Iran. Rivista Italiano di Paleontologia Stratigrafia 109, 307–37.Google Scholar
Korte, C., Jasper, T., Kozur, H. W. & Veizer, J. 2005. δ18Ocarb and δ13Ccarb of Permian brachiopods: a record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 224, 333–51.Google Scholar
Korte, C., Jasper, T., Kozur, H. W. & Veizer, J. 2006. 87Sr/86Sr record of Permian seawater. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 89107.Google Scholar
Kossovaya, O. L. & Kropatcheva, G. S. 2013. Extinction of Guadalupian rugose corals: an example of biotic response to the Kamura event (southern Primorye, Russia). In Palaeozoic Climate Cycles: Their Evolutionary and Sedimentological Impact (eds Gąsiewicz, A. & Słowakiewicz, M.), pp. 407–29. Geological Society of London, Special Publication no. 312.Google Scholar
Kroopnick, P. M. 1985. The distribution of 13C and δCO2 in the world oceans. Deep-Sea Research 32, 5784.Google Scholar
Large, R. R., Halpin, J. A., Lounejeva, E., Danyushevsky, L. V., Malsennikov, V. V., Gregory, D., Sack, P. J., Haines, P. W., Long, J. A., Makoundi, C. & Stepamov, S. 2015. Cycles of nutrient trace elements in the Phanerozoic ocean. Gondwana Research 28, 1282–93.Google Scholar
Leven, E. Ja. & Vaziri Moghaddam, H. 2004. Carboniferous–Permian stratigraphy and fusulinids of eastern Iran. The Permian in the Bagh-e Vang section (Shirgesht area). Rivista Italiano di Paleontologia Stratigrafia 110, 441–65.Google Scholar
Liu, X.-C., Wang, W., Shen, S.-Z., Gorgij, M. N., Ye, F.-C., Zhang, Y.-C., Furuyama, S., Kano, A. & Chen, X.-Z. 2013. Late Guadalupian to Lopingian (Permian) carbon and strontium isotopic chemostratigraphy in the Abadeh section, central Iran. Gondwana Research 24, 222–32.Google Scholar
Mii, H. S., Grossman, E. L. & Yancey, T. E., 1997. Stable carbon and oxygen isotope shifts in Permian seas of West Spitsbergen-global change or diagenetic artifact? Geology 25, 227–30.Google Scholar
Milliman, J. D. 1974. Marine Carbonates. New York, Springer-Verlag, 375 pp.Google Scholar
Montañez, I. P., Tabor, N. J., Niemer, D., Dimichele, W. A., Frank, T. D., Fielding, C. R., Isbell, J. L., Birgenheier, L. P. & Rygel, M. C. 2007. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 315, 8791.Google Scholar
Nelson, C. S. 1988. An introductory perspective on non-tropical shelf carbonates. In Non-Tropical Shelf Carbonates–Modern and Ancient (ed. Nelson, C. S.). Sedimentary Geology 60, 312.Google Scholar
Oti, M. & Müller, G. 1985. Textural and mineralogical changes in coralline algae during meteoric diagenesis: an experimental approach. Neues Jahrbuch für Mineralogie, Abhandlungen 151, 163–95.Google Scholar
Perrin, C., Prestimonaco, L., Servelle, G., Tilhac, R., Maury, M. & Cabrol, P. 2014. Aragonite-calcite speleothems: identifying original and diagenetic features. Journal of Sedimentary Research 84, 245–69.Google Scholar
Retallack, G. J. 2013. Permian and Triassic greenhouse crises. Gondwana Research 24, 90103.Google Scholar
Romanek, C. S., Grossman, E. L. & Morse, J. W. 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56, 419–30.Google Scholar
Rao, C. P. 1991. Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia. Carbonates and Evaporites 6, 83106.Google Scholar
Rao, C. P. 1996. Elemental composition of marine calcite in modern temperate shelf brachiopods, bryozoans, and bulk carbonates, Eastern Tasmania, Australia. Carbonates and Evaporites 11, 118.Google Scholar
Rao, C. P. & Adabi, M. H. 1992. Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia. Marine Geology 103, 249–72.Google Scholar
Rao, C. P. & Amini, Z. Z. 1995. Faunal relationship to grain-size, mineralogy and geochemistry in recent temperate shelf carbonates, western Tasmania, Australia. Carbonates and Evaporites 10, 114–23.Google Scholar
Rao, C. P., Amini, Z. Z. & Ferguson, J. 1998. Comparison between subtropical and temperate carbonate elemental composition: examples from the Great Barrier Reef, Shark Bay, Tasmania (Australia) and the Persian Gulf (United Arab Emirates). In Reefs and Carbonate Platforms in the Pacific and Indian Oceans (Special Publication 25 of the IAS) (eds Camoin, G. F. & Davis, P. J.), pp. 311–23. Special Publications of the International Association of Sedimentologists no. 25.Google Scholar
Robinson, P. 1980. Determination of calcium, magnesium, manganese, strontium and iron in the carbonate fraction of limestones and dolomites. Chemical Geology 28, 135–46.Google Scholar
Saitoh, M., Isozaki, Y., Ueno, Y., Yoshida, N., Yao, J. & Ji, Z. 2013. Middle-Upper Permian carbon isotope stratigraphy at Chaotian, South China: pre-extinction multiple upwelling of oxygen-depleted water onto continental shelf. Journal of Asian Earth Sciences 6768, 5162.Google Scholar
Saltzman, M. R. 2005. Phosphorous, nitrogen, and redox evolution of the Paleozoic oceans. Geology 33, 573–6.Google Scholar
Sandberg, P. A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305, 1922.Google Scholar
Scholle, P. A., Stemmerik, L. & Ulmer, D. S. 1991. Diagenetic history and hydrocarbon potential of Upper Permian carbonate buildups, Wegener Halvo area, Jameson Land basin, East Greenland. American Association of Petroleum Geologists Bulletin 75, 701–25.Google Scholar
Shellnutt, J. G., Denyszyn, S. & Mundil, R. 2012. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Research 22, 118–26.Google Scholar
Shen, S.-Z., Cao, C.-Q., Zhang, H., Bowring, S. A., Henderson, C. M., Payne, J. L., Davy-dov, V. I., Chen, B., Yuan, D.-X., Zhang, Y.-C., Wang, W. & Zheng, Q.-F. 2013. High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran. Earth and Planetary Science Letters 375, 156–65.Google Scholar
Shi, L., Feng, Q., Shen, J., Itob, T. & Chen, Z.-Q. 2016. Proliferation of shallow-water radiolarians coinciding with enhanced oceanic productivity in reducing conditions during the Middle Permian, South China: evidence from the Gufeng Formation of western Hubei Province. Palaeogeography, Palaeoclimatology, Palaeoecology 444, 114.Google Scholar
Stanley, M. S. & Hardie, L. A. 1999. Hypercalcification: paleontology links plate tectonics and geochemistry to sedimentology. GSA Today 9, 27.Google Scholar
Stiller, M., Rounick, J. S. & Shasha, S. 1985. Extreme carbon-isotope enrichment in evaporating brines. Nature 316, 434–5.Google Scholar
Stöcklin, J., Eftekhar-Nezhad, J. & Hushmand-Zadeh, A. 1965. Geology of the Shotori Range (Tabas area, East Iran). Geological Survey of Iran, Report no. 3, 69 pp.Google Scholar
Takin, M. 1972. Iranian geology and continental drift in the Middle East. Nature 235 (5335), 147–50.Google Scholar
Taraz, H. 1969. Permo-Triassic section in central Iran. American Association of Petroleum Geologists Bulletin 53, 688–93.Google Scholar
Taraz, H. 1971. Uppermost Permian and Permo-Triassic transition beds in central Iran. American Association of Petroleum Geologists Bulletin 55, 1280–94.Google Scholar
Taraz, H. 1973. Correlation of uppermost Permian in Iran, central Asia, and South China. American Association of Petroleum Geologists Bulletin 57, 1117–33.Google Scholar
Veizer, J. & Demovic, R. 1974. Strontium as a tool for facies analysis. Journal of Sedimentary Petrology 44, 93115.Google Scholar
Veizer, J., Fritz, P. & Jones, B. 1986. Geochemistry of brachiopods: oxygen and carbon isotopic records of the Paleozoic oceans. Geochimica et Cosmochimica Acta 50, 1679–96.Google Scholar
Veizer, J., Bruckschen, P., Pawellek, F., Diener, A., Podlaha, O. G., Carden, G. A. F., Jasper, T., Korte, C., Strauss, H., Azmy, K. & Ala, D. 1997. Oxygen isotope evolution of Phanerozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 159–72.Google Scholar
Wang, W., Cao, C. Q. & Wang, Y. 2004. The carbon isotope excursion on GSSP candidate section of Lopingian–Guadalupian boundary. Earth and Planetary Science Letters 220, 5767.Google Scholar
Wardlaw, B. R. & Collinson, J. W. 1986. Paleontology and deposition of the Phosphoria Formation. Contributions to Geology, University of Wyoming 24, 107–42.Google Scholar
Wei, H.-Y., Chen, D.-Z., Yu, H. & Wang, J.-G. 2012. End-Guadalupian mass extinction and negative carbon isotope excursion at Xiaojiaba, Guangyuan, Sichuan. Science China 55 (9), 1480–8.Google Scholar
Wignall, P. B., Sun, Y., Bond, D. P. G., Izon, G., Newton, R. J., Vedrine, S., Widdowson, M., Ali, J. R., Lai, X., Jiang, H., Cope, H. & Bottrell, S. H. 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science 324, 1179–82.Google Scholar
Weidlich, O. & Bernecker, M. 2003. Supersequence and composite sequence carbonate platform growth: Permian and Triassic outcrop data of the Arabian platform and Neo-Tethys. Sedimentary Geology 158, 87116.Google Scholar
Wilkinson, B. H., Owen, R. M. & Carroll, A. R. 1985. Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in Phanerozoic marine oolites. Journal of Sedimentary Petrology 55, 171–83.Google Scholar
Zhang, Z., Mahoney, J.-J., Mao, J. & Wang, F., 2006a. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology 47, 19972019.Google Scholar
Zhang, Z., Mao, J., Wang, F. & Pirajno, F. 2006b. Native gold and native copper grains enclosed by olivine phenocrysts in a picritic lava of the Emeishan large igneous province, SW China. American Mineralogist 91, 1178–83.Google Scholar
Zhang, L.-L., Zhang, N. & Xia, W.-C. 2008. Conodont succession in the Guadalupian–Lopingian boundary interval (upper Permian) of the Maoershan section, Hubei province, China. Micropaleontology 53, 433–46.Google Scholar