Skip to main content Accessibility help

Geochronological and geochemical studies of the OIB-type Baiyanghe dolerites: implications for the existence of a mantle plume in northern West Junggar (NW China)

  • XIU-QUAN MIAO (a1), XIN ZHANG (a1), HUI ZHANG (a2), JIN-RONG WANG (a1), ZHENG LIU (a1), CHENG-ZE LI (a1), QIANG SHI (a1), RUN-WU LI (a1), YAO-SHEN HUANG (a1) and QUAN-ZHENG MA (a3)...


In this paper, zircon U–Pb geochronology, major and trace elements, and Sr–Nd isotope geochemistry of the Baiyanghe dolerites in northern West Junggar of NW China are presented. The U–Pb dating of zircons from the dolerites yielded ages of 272.2±4 Ma and 276.7±6.2 Ma, which indicate the emplacement times. The dolerites are characterized by minor variations in SiO2 (46.89 to 49.07 wt%), high contents of Al2O3 (13.60 to 13.92 wt%) and total Fe2O3 (11.14 to 11.70 wt%), and low contents of MgO (2.67 to 3.64 wt%) and total alkalis (Na2O+K2O, 5.1 to 5.97 wt%, K2O/Na2O = 0.37–0.94), which indicate affinities to metaluminous tholeiite basalt. The REE pattern ((La/Sm)N = 2.25–2.34, (La/Yb)N = 7.42–8.36), V–Ti/1000 and 50*Zr–Ti/50–Sm discrimination diagrams show that these rocks are OIB-type. The high contents of Zr and Ti indicate a within-plate tectonic setting, and samples plot in the ‘plume source’ field shown on the Dy/Yb(N) versus Ce/Yb(N) diagram. The positive εNd(t) values (+7.09 to +7.48), high initial 87Sr/86Sr ratios (0.70442 to 0.70682) and depletions of Nb and Ta elements in the samples can be explained by the involvement of subducted sediments. In summary, it is possible that the Baiyanghe dolerites were derived from an OIB-like mantle source and associated with a mantle plume tectonic setting. Therefore, our samples provide the youngest evidence for the existence of a mantle plume, which may provide new insights into the Late Palaeozoic tectonic setting of West Junggar.


Corresponding author

Author for correspondence:


Hide All
Abrajevitch, A., Van der Voo, R., Bazhenov, M. L., Levashova, N. M. & McCausland, P. J. A. 2008. The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia. Tectonophysics 455, 6176.
Bacon, C. R., Bruggman, P. E., Cheitiansen, R. L., Clynne, M. A., Donnelly-Nolan, J. M. & Hildreth, W. 1997. Primitive magmas at five Cascade volcanic fields: melts from hot, heterogeneous sub-arc mantle. Canadian Mineralogist 35, 397423.
Badarch, G., Cunningham, W. D. & Windley, B. F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences 21, 87110.
BGMRXUAR (Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region). 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House, 841 pp. (in Chinese with English abstract).
Biske, Y. S. & Seltmann, R. 2010. Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan Oceans. Gondwana Research 17, 602–13.
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.
Buckman, S. & Aitchison, J. C. 2004. Tectonic evolution of Paleozoic terranes in West Junggar, Xinjiang, NW China. In Aspects of the Tectonic Evolution of China (eds Malpas, J., Fletcher, C. J. N. & Aitchison, J. C.), pp. 101–29. Geological Society of London, Special Publication no. 226.
Buslov, M. M., Fujiwara, Y., Iwata, K. & Semakov, N. N. 2004. Late Paleozoic–Early Mesozoic geodynamics of Central Asia. Gondwana Research 7, 791808.
Buslov, M. M., Safonova, I. Y., Watanabe, T., Obut, O. T., Fujiwara, Y., Iwata, K., Semakov, N. N., Sugai, Y., Smirnova, L. V., Kazansky, A. Y. & Itaya, T. 2001. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosciences Journal 5, 203–24.
Chauvel, C., Hofmann, A. W. & Vidal, P. 1992. HIMU EM – The French June 2012324 Polynesian Connection. Earth and Planetary Science Letters 110, 99119.
Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T. & Marini, J.-C. 2008. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nature Geosciences 1, 64–7.
Chen, B. & Arakawa, Y. 2005. Elemental and Nd–Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta 69, 1307–20.
Chen, S. & Guo, Z. J. 2010. Time constraints, tectonic setting of Dalabute ophiolitic complex and its significance for Late Paleozoic tectonic evolution in West Junggar. Acta Petrologica Sinica 26, 2336–44 (in Chinese with English abstract).
Chen, S., Guo, Z. J., Pe-Piper, G. & Zhu, B. B. 2013. Late Paleozoic peperites in West Junggar, China, and how they constrain regional tectonic and palaeo-environmental setting. Gondwana Research 23, 666–81.
Chen, J. F., Han, B. F., Ji, J. Q., Zhang, L., Xu, Z., He, G. Q. & Wang, T. 2010. Zircon U–Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos 115, 137–52.
Chen, J. F., Han, B. F. & Zhang, L. 2010. Geochemistry, Sr–Nd isotopes and tectonic implications of two generations of Late Paleozoic plutons in northern West Junggar, Northwest China. Acta Petrologica Sinica 26, 2317–35 (Chinese with English abstract).
Chen, B. & Jahn, B. M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd–Sr isotope and trace element evidence. Journal of Asian Earth Sciences 23, 691703.
Choulet, F., Chen, Y., Wang, B., Faure, M., Cluzel, D., Charvet, J., Lin, W. & Xu, B. 2011. Late Paleozoic paleogeographic reconstruction of Western Central Asia based upon paleomagnetic data and its geodynamic implications. Journal of Asian Earth Sciences 42, 867–84.
Cliff, R. A., Baker, P. E. & Mateer, N. J. 1991 Geochemistry of inaccessible island volcanics. Chemical Geology 92, 251–60.
Clift, P. D. & Vannucchi, P. 2004. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Reviews of Geophysics 42, 117–28.
Coleman, R. G. 1989. Continental growth of Northwest China. Tectonics 8, 621–35.
Condie, K. C. 1998. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters 163, 97108.
Degtyarev, K. E. 1999. Tectonic Evolution of the Early Paleozoic Active Margin in Kazakhstan. Moscow: Nauka, 123 pp. (in Russian).
Degtyarev, K. E. 2011. Tectonic evolution of early Paleozoic island arc systems and continental crust formation in the Caledonides of Kazakhstan and the North Tien Shan. Geotectonics 45, 2350.
Deng, J., Wang, Q. F., Yang, S. J., Liu, X. F., Zhang, Q. Z., Yang, L. Q. & Yang, Y. H. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: constraints from U–Pb and Lu–Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian Earth Sciences 37, 412–24.
DePaolo, D. J., Bryce, J. G., Dodson, A., Shuster, D. L. & Kennedy, B. M. 2001. Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume. Geochemistry, Geophysics, Geosystems 2, 223–35.
Didenko, A. N. & Morozov, O. L. 1999. Geology and paleomagnetism of Middle–Upper Paleozoic rocks of the Saur Ridge. Geotectonics 4, 6480 (in Russian with English abstract).
Dobretsov, N. L., Buslov, M. M. & Vernikovsky, V. A. 2003. Neoproterozoic to Early Ordovician evolution of the Paleo-Asian Ocean: implications to the break-up of Rodinia. Gondwana Research 6, 143–59.
Eby, G. N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20, 641.
Ewart, A., Collerson, K. D. & Regelous, M. 1998. Geochemical evolution within the Tonga-Kermadec-Lau arc-back-arc systems: the role of varying mantle wedge composition in space and time. Journal of Petrology 39, 331–68.
Feng, Y. M., Coleman, R. G., Tilton, G. R. & Xiao, X. C. 1989. Tectonic evolution of the West Junggar region, Xinjiang, China. Tectonics 8, 729–52.
Feng, Q. W., Li, J. Y., Liu, J. F., Zhang, J. & Qu, J. F. 2012. Ages of the Hongshan granite and intruding dioritic dyke swarms, in western Junggar, Xinjiang, NW China: evidence from LA-ICP-MS zircon chronology. Acta Petrologica Sinica 28, 2935–49 (in Chinese with English abstract).
Filippova, I. B., Bush, V. A. & Didenko, A. N. 2001. Middle Paleozoic subduction belts: the leading factor in the formation of the Central Asian fold-and-thrust belt. Russian Journal of Earth Sciences 3, 405–26.
Gao, R., Xiao, L., Pirajno, F., Wang, G. C., He, X. X., Yang, G. & Yan, S. W. 2014. Carboniferous–Permian extensive magmatism in the West Junggar, Xinjiang, northwestern China: its geochemistry, geochronology, and petrogenesis. Lithos 204, 125–43.
Geng, H. Y., Sun, M., Yuan, C., Xiao, W. J., Xian, W. S., Zhao, G. C., Zhang, L. F., Wong, K. & Wu, F. Y. 2009. Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction? Chemical Geology 266, 373–98.
Geng, H. Y., Sun, M., Yuan, C., Zhao, G. C. & Xiao, W. J. 2011. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: petrogenesis and tectonic implications. Journal of Asian Earth Sciences 42, 854–66.
Gu, P. Y., Li, Y. J., Zhang, B., Tong, L. L. & Wang, J. N. 2009. LA-ICP-MS zircon U–Pb dating of gabbro in the Darbut ophiolite, western Junggar, China. Acta Petrologica Sinica 25, 1364–72 (in Chinese with English abstract).
Haase, K. M. & Devey, C. W. 1996. Geochemistry of lavas from the Ahu and Tupa volcanic fields, Easter hotspot, southeast Pacific: implications for intraplate magma genesis near a spreading axis. Earth and Planetary Science Letters 137, 129–43.
Han, B. F., Ji, J. Q., Song, B., Chen, L. H. & Zhang, L. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): timing of postcollisional plutonism. Acta Petrologica Sinica 22, 1077–86 (in Chinese with English abstract).
Hawkesworth, C. & Schersten, A. 2007. Mantle plumes and geochemistry. Chemical Geology 241, 319–31.
Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W. & van Calsteren, P. 1997. U–Th isotopes in arc magmas: implications for element transfer from subducted crust. Science 276, 551–5.
He, G. Q., Chen, S. D., Xu, X., Li, J. Y. & Hao, J. 2004. An Introduction to Tectonic Map of Xinjiang and its Neighboring Area (1: 250000). Beijing: Geological Publishing House, 65 pp.
He, J. W., Zhu, W. B., Ge, R. F., Zheng, B. H. & Wu, H. L. 2014. Detrital zircon U–Pb ages and Hf isotopes of Neoproterozoic strata in the Aksu area, northwestern Tarim Craton: implications for supercontinent reconstruction and crustal evolution. Precambrian Research 254, 194209.
Hémond, C., Hofmann, A. W., Vlastélic, I. & Nauret, F. 2006. Origin of MORB enrichment and relative trace element compatibilities along the Mid-Atlantic Ridge between 10° and 24°n. Geochemistry, Geophysics, Geosystems 7 (12). doi: 10.1029/2006GC001317.
Hirano, N., Koppersw, A. A. P., Takahashi, A., Fujiwara, T. & Nakanishi, M. 2008. Seamounts, knolls and petit-spot monogenetic volcanoes on the subducting Pacific Plate. Basin Research 20, 543–53.
Hirano, N., Takahashi, E., Yamamoto, J., Abe, N., Ingle, S. P., Kaneoka, I., Kimura, J., Hirata, T., Ishii, T., Ogawa, Y., Machida, S. & Suyehiro, K. 2006. Volcanism in response to plate flexure. Science 313, 1426–8.
Hofmann, A. W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–29.
Hofmann, A. W. & White, W. M. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters 57, 421–36.
Hu, A. Q., Jahn, B. M., Zhang, G. X., Chen, Y. B. & Zhang, Q. F. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328, 1551.
Irvine, T. N. & Baragar, W. R. A. 1971. A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.
Jackson, M. G., Hart, S. R., Koppers, A. A. P., Staudigel, H., Konter, J., Blusztajn, J., Kurz, M. & Russell, M. A. 2007. The return of subducted continental crust in Samoan lavas. Nature 448, 684–7.
Jahn, B. M., Capdevila, R., Liu, D., Vernon, A. & Badarch, G. 2004a. Sources of Phanerozoic granitoids in the transect Bayanhongor–Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences 23, 629–53.
Jahn, B. M., Windley, B. F., Natalin, B. & Dobretsov, N. 2004b. Phanerozoic continental growth in central Asia. Journal of Asian Earth Sciences 23, 599603.
Jahn, B. M., Wu, F. Y. & Chen, B. 2000a. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23, 8292.
Jahn, B. M., Wu, F. Y. & Chen, B. 2000b. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences 91, 181–93.
Jian, P., Liu, D. Y., Shi, Y. R. & Zhang, F. Q. 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: implications for generation of oceanic crust in the central Asian orogenic belt. In Structural and Tectonic Correlation across the Central Asia Orogenic Collage: North-Eastern Segment, Guidebook and Abstract Volume of the Siberian Workshop ICCP-480, ICE SBRAS (ed. Sklyarov, E. V.), pp. 246–51.
Kawai, K., Tsuchiya, T., Tsuchiya, J. & Maruyama, S. 2009. Lost primordial continents. Gondwana Research 16, 581–6.
Khain, E. V., Bibikova, E. V., Kroner, A., Zhuravlev, D. Z., Sklyarov, E., Fedotova, A. A. & Kravchenko-Berezhnoy, I. R. 2002. The most ancient ophiolite of the Central Asian fold belt: U–Pb and Pb–Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth and Planetary Science Letters 199, 311–25.
Kita, I., Yamamoto, M., Asakawa, Y., Nakagawa, M., Taguchi, S. & Hasegawa, H. 2001. Contemporaneous ascent of within-plate type and island-arc type magmas in the Beppu-Shimabara graben system, Kyushu island, Japan. Journal of Volcanology and Geothermal Research 111, 99109.
Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., Kotov, A. B., Kozakov, I. K., Salnikova, E. B. & Larin, A. M. 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian Mobile Belt: geological and isotopic evidence. Journal of Asian Earth Sciences 23, 605–27.
Kröner, A., Alexeiev, D. V., Rojas-Agramonte, Y., Hegner, E., Wong, J., Xia, X., Belousova, E., Mikolaichuk, A. V., Seltmann, R., Liu, D., Kiselev, V. V. 2013. Mesoproterozoic (Grenville-age) terranes in the Kyrgyz North Tianshan: zircon ages and Nd–Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen. Gondwana Research 23, 272–95.
Lassiter, J. C. & DePaolo, D. J. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotopic constraints. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.), pp. 335–55. Washington, DC: American Geophysical Union.
Le Bas, M. J., Le Maitre, R. W., Streckeiser, A. & Zanettin, B. 1986. Chemical classification of volcanic rocks based on total alkali-silica diagram. Journal of Petrology 27, 745–50.
Levashova, N. M., Van der Voo, R., Abrajevitch, A. V. & Bazhenov, M. L. 2009. Paleomagnetism of mid-Paleozoic subduction-related volcanics from the Chingiz Range in NE Kazakhstan: the evolving paleogeography of the amalgamating Eurasian composite continent. Geological Society of America Bulletin 121, 555–73.
Li, X. B. 2009. Thermal ionization mass spectrometry (TIMS) of the Sr–Nd–Pb isotope standard sample measured. Mineralogica Sinica 1, 2631 (in Chinese).
Li, D., He, D., Ma, D., Tang, Y., Kong, Y. & Tang, J. 2015a. Carboniferous–Permian tectonic framework and its later modifications to the area from eastern Kazakhstan to southern Altai: insights from the Zaysan-Jimunai basin evolution. Journal of Asian Earth Sciences 113, 1635.
Li, D., He, D. F., Qi, X. F. & Zhang, N. N. 2015b. How was the Carboniferous Balkhash–West Junggar remnant ocean filled and closed? Insights from the Well Tacan-1 strata in the Tacheng Basin, NW China. Gondwana Research 27, 342–62.
Li, Z. L., Li, Y. Q., Chen, H. L., Santosh, M., Yang, S. F., Xu, Y. G., Langmuir, C. H., Chen, Z. X., Yu, X. & Zou, S. Y. 2012. Hf isotopic characteristics of the Tarim Permian large igneous province rocks of NW China: implication for the magmatic source and evolution. Journal of Asian Earth Sciences 49, 191202.
Litasov, K. D. 2011. Physicochemical conditions for melting in the Earth's mantle containing a C–O–H fluid (from experimental data). Russian Geology and Geophysics 52, 475–92.
Liu, X. J., Xu, J. F., Wang, S. Q., Hou, Q. Y., Bai, Z. H. & Lei, M. 2009. Geochemistry and dating of E-MORB type mafic rocks from Dalabute ophiolite in West Junggar, Xinjiang and geological implications. Acta Petrologica Sinica 25, 1373–89 (in Chinese with English abstract).
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 4.
Ma, C., Xiao, W. J., Windley, B. F., Zhao, G. P., Han, C. M., Zhang, J. E., Luo, J. & Li, C. 2012. Tracing a subducted ridge-transform system in a late Carboniferous accretionary prism of the southern Altaids: orthogonal sanukitoid dyke swarms in Western Junggar, NW China. Lithos 140, 152–65.
Mahoney, J. J., Frei, R., Tejada, M. L. G., Mo, X. X., Leat, P. T. & Nagler, T. F. 1998. Tracing the Indian Ocean mantle domain through time: isotopic results from old west Indian, east Tethyan, and South Pacific seafloor. Journal of Petrology 39, 1285–306.
Mahoney, J. J., Jones, W. B., Frey, F. A., Salters, V. J. M., Pyle, D. G. & Davies, H. L. 1995. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and southernmost Kerguelen Plateau: oceanic plateau volcanism in the southeast Indian Ocean. Chemical Geology 120, 315–45.
Maniar, P. D. & Piccoli, P. M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–43.
Maruyama, S. 1994. Plume tectonics. Journal of the Geological Society of Japan 100, 2449.
Maruyama, S., Hasegawa, A., Santosh, M., Kogiso, T., Omori, S., Nakamura, H., Kawai, K. & Zhao, D. 2009. The dynamics of big mantle wedge, magma factory, and metamorphic-metasomatic factory in subduction zones. Gondwana Research 16, 414–30.
Maruyama, S., Omori, S., Sensu, H., Kawai, K. & Windley, B. F. 2011. Pacific-type orogens: new concepts and variations in space and time from present to past. Journal of Geography 120, 115223 (in Japanese with English abstract and captions).
Maruyama, S., Santosh, M. & Zhao, D. 2007. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the Core-Mantle Boundary. Gondwana Research 11, 737.
Maruyama, S., Sawaki, Y., Ebisuzaki, T., Ikoma, M., Omori, S. & Komabayashi, T. 2014. Initiation of leaking Earth: an ultimate trigger of the Cambrian explosion. Gondwana Research 25, 910–44.
McKenzie, D. & O'Nions, R. K. 1995. The source regions of oceanic island basalts. Journal of Petrology 36, 133–59.
Meert, J. G. & Lieberman, B. S. 2008. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation. Gondwana Research 14, 521.
Menzies, M. A., Long, A., Ingeram, G., Talnfl, M. & Janfcky, D. 1993. MORB peridotite–seawater interaction: experimental constrains on the behavior of trace elements, 87Sr/86Sr and 143Nd/144Nd ratios. In Magmatic Processes and Plate Tectonics (eds Pritchard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 309–22. Geological Society of London, Special Publication no. 76.
Miyashiro, A. 1975. Classification, characteristics and origin of ophiolites. Journal of Geology 83, 249–81.
Mullen, E. D. 1983. MnO-TiO2-P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters 62, 5362.
Nauret, F., Abouchami, W., Galer, S. J. G., Hofmann, A. W., Hemond, C., Chauvel, C. & Dyment, J. 2006. Correlated trace element–Pb isotope enrichments in Indian MORB along 10°–20°S, Central Indian Ridge. Earth and Planetary Science Letters 245, 137–52.
Niu, Y. L. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath ocean ridges. Journal of Petrology 45, 2423–58.
Niu, Y., Collerson, K. D. & Batiza, R. 1999. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: the East Pacific Rise at 11°20N. Journal of Geophysical Research 104, 7067–87.
Niu, Y. L. & O'Hara, M. J. 2003. Origin of ocean island basalts: a new perspective from petrology, geochemistry and mineral physics considerations. Journal of Geophysical Research 108, 2209.
Niu, Y., Regelous, M., Wendt, I. J., Batiza, R. & O'Hara, M. J. 2002. Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letters 199, 327–45.
Niu, Y., Wilson, M., Humphreys, E. R. & Hara, M. J. O. 2012. A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle lithosphere (SML). Episodes 35, 310–27.
Nowell, G. M., Kempton, P. D., Noble, S. R., Fitton, J. G., Saunders, A. D., Mahoney, J. J. & Taylor, R. N. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology 149, 211–33.
Ohtani, E., Litasov, K., Hosoya, T., Kubo, T. & Kondo, T. 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Physics of the Earth and Planetary Interiors 143, 255–69.
Ota, T., Utsunomiya, A., Uchio, Y., Isozaki, Y., Buslov, M. M., Ishikawa, A., Maruyama, S., Kitajima, K., Kaneko, Y., Yamamoto, H. & Katayama, I. 2007. Geology of the Gorny Altai subduction-accretion complex, southern Siberia: tectonic evolution of an Ediacaran–Cambrian intra-oceanic arc-trench system. Journal of Asian Earth Sciences 30, 666–95.
Pearce, J. A. 1982. Trace elements characteristic of lavas from destructive plate boundaries. In Orogenic Andesites and Related Rocks (ed. Thorpe, R. S.), pp. 525–48. Chichester: Wiley.
Pearce, J. A. & Norry, M. J. 1979. Petrogenetic implication of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 3347.
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R. & Chenery, S. P. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21, 115–44.
Pilet, S., Baker, M. B. & Stolper, E. M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916–19.
Pilet, S., Hernandez, J., Sylvester, P. & Poujol, M. 2005. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth and Planetary Science Letters 236, 148–66.
Pirajno, F., Ernst, R., Borisenko, A. S., Fedoseev, G. & Naumov, E. 2009. Intraplate magmatism in Central Asian and China and associated metallogeny. Ore Geology Reviews 35, 114–36.
Pirajno, F., Mao, J. W., Zhang, Z. C., Zhang, Z. H. & Chai, F. M. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tianshan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences 32, 165–83.
Plank, T. & Langmuir, C. H. 1998. The chemical compositions of subducting sediments and its consequences for the crust and mantle. Chemical Geology 145, 325–94.
Qi, L. & Grégoire, D. C. 2000. Determination of trace elements in twenty-six Chinese geochemistry reference materials by inductively coupled plasma mass spectrometry. Geostandards Newsletter 24, 5163.
Ren, R., Han, B. F., Xu, Z., Zhou, Y. Z., Liu, B., Zhang, L., Chen, J. F., Su, L., Li, J., Li, X. H. & Li, Q. L. 2014. When did the subduction first initiate in the southern Paleo-Asian Ocean: new constraints from a Cambrian intra-oceanic arc system in West Junggar, NW China. Earth and Planetary Science Letters 388, 222–36.
Ringwood, A. E. 1991. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochimica et Cosmochimica Acta 55, 2083–110.
Rogers, N. W. 1993. The isotope and trace element geochemistry of basalts from the volcanic islands of the southern Red Sea. Magmatic Processes and Plate Tectonics (eds Pritchard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 455–67. Geological Society of London, Special Publication no. 76.
Rollinson, H. R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: John Wiley & Sons.
Safonova, I. Y. 2009. Intraplate magmatism and oceanic plate stratigraphy of the PaleoAsian and Paleo-Pacific Oceans from 600 to 140 Ma. Ore Geology Reviews 35, 137–54.
Safonova, I. Y., Buslov, M. M., Simonov, V. A., Izokh, A. E., Komiya, T., Kurganskaya, E. V. & Ohno, Т. 2011a. Geochemistry, petrogenesis and geodynamic origin of basalts from the Katun accretionary complex of Gorny Altay, south-western Siberia. Russian Geology and Geophysics 52, 421–42.
Safonova, I. Y., Litasov, K. & Maruyama, S. 2015. Triggers and sources of volatile-bearing plumes in the mantle transition zone. Geoscience Frontiers 6, 685.
Safonova, I. & Maruyama, S. 2014. Asia: a frontier for a future supercontinent. International Geology Review 56, 1051–71.
Safonova, I. Y. & Santosh, M. 2014. Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research 25, 126–58.
Safonova, I. Y., Sennikov, N. V., Komiya, T., Bychkova, Y. V. & Kurganskaya, E. V. 2011b. Geochemical diversity in oceanic basalts hosted by the Zasur'ya accretionary complex, NW Russian Altai, Central Asia: implications from trace elements and Nd isotopes. Journal of Asian Earth Sciences 42, 191207.
Safonova, I. Y., Simonov, V. A., Obut, O. T., Kurganskaya, E. V., Romer, R. & Seltmann, R. 2012. Late Paleozoic oceanic basalts hosted by the Char suture-shear zone, East Kazakhstan: geological position, geochemistry, petrogenesis and tectonic setting. Journal of Asian Earth Sciences 49, 2039.
Safonova, I. Y., Utsunomiya, A., Kojima, S., Nakae, S., Tomurtogoo, O., Filippov, A. N. & Koizumi, K. 2009. Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan. Gondwana Research 16, 587608.
Saunders, A. D., Norry, M. J. & Tarney, J. 1988. Origin of MORB and chemically-depleted mantle reservoirs: trace element constraints. Journal of Petrology 1, 415–45.
Scott, C. R., Mueller, W. U. & Pilote, P. 2002. Physical volcanology, stratigraphy, and lithogeochemistry of an Archean volcanic arc: evolution from plume-related volcanism to arc rifting of SE Abitibi Greenstone Belt, Val d'Or, Canada. Precambrian Research 115, 223–60.
Sengör, A. M. C. & Natalin, B. A. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences 24, 263337.
Sengör, A. M. C., Natalin, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364, 299307.
Senshu, H., Maruyama, S., Rino, S. & Santosh, M. 2009. Role of tonalite-trodhjemite granite (TTG) crust subduction on the mechanism of supercontinent breakup. Gondwana Research 15, 433–42.
Shen, P., Shen, Y. C., Li, X. H., Pan, H. D., Zhu, H. P., Meng, L. & Dai, H. W. 2012. Northwestern Junggar Basin, Xiemisitai Mountains, China: a geochemical and geochronological approach. Lithos 140, 103–18.
Shervais, J. 1982. Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101–18.
Sleep, N. H. 1992. Hotspot volcanism and mantle plumes. Annual Review of Earth and Planetary Sciences 20, 1943.
Smith, R. E. & Smith, S. E. 1976. Comments on the use of Ti, Zr, Y, Sr, K, P and Na in classification of basaltic magmas. Earth and Planetary Science Letters 32, 114–20.
Stein, M. & Hofmann, A. W. 1994. Mantle plumes and episodic crustal growth. Nature 37, 63–8.
Su, B. X., Qin, K. Z., Sakyi, P. A., Li, X. H., Yang, Y. H., Sun, H., Tang, D. M., Liu, P. P., Xiao, Q. H. & Malaviarachchi, S. P. K. 2011. U–Pb ages and Hf–O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research 20, 516–31.
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics in ocean basalt: implication for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.
Tang, G. J., Wang, Q., Wyman, D. A., Li, Z. X., Zhao, Z. H., Jia, X. H. & Jiang, Z. Q. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chemical Geology 277, 281300.
Tang, G. J., Wang, Q., Wyman, D. A., Li, Z. X., Zhao, Z. H. & Yang, Y. H. 2012a. Late Carboniferous high εNd(t)–εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: ridge-subduction-related magmatism and crustal growth. Lithos 140–141, 86102.
Tang, G. J., Wyman, D. A., Wang, Q., Li, J., Li, Z. X., Zhao, Z. H. & Sun, W. D. 2012b. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: trace element and Sr–Nd–Hf–Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth and Planetary Science Letters 329, 8496.
Tian, W., Campel, I. H., Allen, C. M., Guan, P., Pan, W. Q., Chen, M. M., Yu, H. J. & Zhu, W. P. 2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology 160, 407–25.
Tu, X. L., Hong, Z., Deng, W. F., Ling, M. X., Liang, H. Y., Liu, Y. & Sun, W. D. 2011. Application of RESOlution laser ablation ICPMS in trace element analyses. Geochimica 40, 8398 (in Chinese with English abstract).
Vermeesch, P. 2006. Tectonic discrimination diagrams revisited. Geochemistry, Geophysics, Geosystems 7, 466–80.
Vladimirov, A. G., Kruk, N. N., Khromykh, S. V., Polyansky, O. P., Chervov, V. V., Vladimirov, V. G., Travin, A. V., Babin, G. A., Kuibida, M. L. & Khomyakov, V. D. 2008. Permian magmatism and lithospheric deformation in the Altai caused by crustal and mantle thermal process. Russian Geology and Geophysics 49, 468–79 (in Russian).
Wang, G. R. 1996. Classification of tectonic units and geologic evolution in the northern Xinjiang and neighboring area. Xinjiang Geology 14, 1227 (in Chinese with English abstract).
Wang, B., Chen, Y., Zhan, S., Shu, L., Faure, M., Cluzel, D., Charvet, J. & Laurent-Charvet, S. 2007. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt. Earth and Planetary Science Letters 263, 288308.
Wang, M., Li, X. F., Guo, W., Li, Y. L., Shi, Z. L. & Lu, K. G. 2012. Geological characteristics of Baiyanghe Beryllium-Uranium deposits in Xuemisitan volcanic belt, Xinjiang. Mineral Exploration 3, 3440 (in Chinese with English abstract).
Wang, Z. H., Sun, S., Li, J. L., Hou, Q. L., Qin, K. Z., Xiao, W. J. & Hao, J. 2003. Paleozoic tectonic evolution of the northern Xinjiang, China: geochemical and geochronological constraints from the ophiolites. Tectonics 22, 1014.
Wedepohl, K. H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–32.
White, W. M. & Duncan, R. A. 1996. Geochemistry and geochronology of the Society Islands: new evidence for deep mantle recycling. In Earth Processes: Reading the Isotopic Code (eds Basu, A. & Hart, S.), pp. 183206. American Geophysical Union, Geophysical Monograph vol. 95. Washington, DC, USA.
White, W. M. & Hofmann, A. W. 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296, 821–5.
Wilhem, C., Windley, B. F. & Stampfli, G. M. 2012. The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth-Science Reviews 113, 303–41.
Windley, B. F., Alexeiev, D., Xiao, W. J., Kröner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London 164, 3147.
XBGMR. 1983. Introduction of Geology in Baiyanghe Area. Map Scale 1:200000. Bureau of Geology and Mineral Resources of Xinjiang Autonomous Region, 296 pp.
Xia, L. Q., Xu, X. Y., Xia, Z. C., Li, X. M., Ma, Z. P. & Wang, L. S. 2003. Carboniferous post collisional rift volcanism of the Tianshan Mountains, Northwestern China. Acta Geologica Sinica 77, 338–60.
Xia, L. Q., Xu, X. Y., Xia, Z. C., Li, X. M., Ma, Z. P. & Wang, L. S. 2004. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China. Geological Society of American Bulletin 116, 419–33.
Xiao, W. J., Han, C. M., Yuan, C., Sun, M., Lin, S. F., Chen, H. L., Li, Z. L., Li, J. L. & Sun, S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: implications for the tectonic evolution of Central Asia. Journal of Asian Earth Sciences 32, 102–17.
Xiao, W. J., Han, C. M., Yuan, C., Sun, M., Zhao, G. C. & Shan, Y. H. 2010a. Transitions among Mariana-, Japan-, Cordillera- and Alaska-type arc systems and their final juxtapositions leading to accretionary and collisional orogenesis. In The Evolving Continents: Understanding the Processes of Continental Growth (eds Kusky, T. M., Zhai, M.-G. & Xiao, W.), pp. 3553. Geological Society of London, Special Publication no. 338.
Xiao, W. J., Huang, B. C., Han, C. M., Sun, S. & Li, J. L. 2010b. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Research 18, 253–73.
Xiao, W. J. & Santosh, M. 2014. The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Research 25, 1429–44.
Xiao, W. J., Sun, M. & Santosh, M. 2015. Continental reconstruction and metallogeny of the Circum-Junggar areas and termination of the southern Central Asian Orogenic Belt. Geoscience Frontiers 6, 137–40.
Xiao, W. J., Windley, B. F., Allen, M. & Han, C. M. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research 23, 1316–41.
Xiao, W.J., Windley, B. F., Badarch, G., Sun, S., Li, J. L., Qin, K. Z. & Wang, Z. H. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the lateral growth of Central Asia. Journal of the Geological Society, London 161, 339–42.
Xiao, W. J., Windley, B. F., Huang, B. C., Han, C. M., Yuan, C., Chen, H. L., Sun, M., Sun, S. & Li, J. L. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences 98, 1189–287.
Xiao, W. J., Windley, B. F., Sun, S., Li, J. L., Huang, B. C., Han, C. M., Yuan, C., Sun, M. & Chen, H. L. 2015. A tale of amalgamation of three collage systems in the Permian-Middle Triassic in Central-East Asia: oroclines, sutures, and terminal accretion. Annual Review of Earth & Planetary Sciences 43, 16.116.31.
Xiu, X. Q., Fan, H. H., Ma, H. F. & Yi, L. S. 2011. The wall rock alteration and its geochemical characteristics of Baiyanghe uranium and beryllium deposit, Xinjiang. Uranium Geology 27, 215–20.
Xu, Z., Han, B. F., Ren, R., Zhou, Y. Z., Zhang, L., Chen, J. F., Su, L., Li, X. H. & Liu, D. Y. 2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: implications for Paleozoic intra-oceanic subduction-accretion process. Lithos 132–133, 141–61.
Xu, Q. Q., Ji, J. Q., Zhao, L., Gong, J. F., Zhou, J., He, G. Q., Zhong, D. L., Wang, J. D. & Griffiths, L. 2013. Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: remnant ocean model. Earth-Science Reviews 126, 178205.
Xu, Y. G., Wei, X., Luo, Z. Y., Liu, H. Q. & Cao, J. 2014. The early Permian Tarim large igneous province: main characteristics and a plume incubation model. Lithos 204, 2035.
Yakubchuk, A. S. 2004. Architecture and mineral deposit settings of Altaid orogenic collage: a revised model. Journal of Asian Earth Sciences 23, 761–79.
Yakubchuk, A. S. & Degtyarev, K. E. 1998. The character of link between the Chingiz and Boshchekul trends in the Caledonides of northeastern central Kazakhstan. Doklady Akademii Nauk 298, 1193–8 (in Russian).
Yamamoto, S., Senshu, H., Rino, S., Omori, S. & Maruyama, S. 2009. Granite subduction: arc subduction, tectonic erosion and sediment subduction. Gondwana Research 15, 443–53.
Yang, S. F., Li, Z. L., Chen, H. L., Santosh, M., Dong, C. W. & Yu, X. 2007. Permian bimodal dyke of Tarim Basin, NW China: geochemical characteristics and tectonic implications. Gondwana Research 12, 113–20.
Yang, G. X., Li, Y. J., Gu, P. Y., Tong, L. L. & Zhang, H. W. 2012a. Geochronological and geochemical study of the Darbut Ophiolitic Complex in the West Junggar (NW China): implications for petrogenesis and tectonic evolution. Gondwana Research 21, 1037–49.
Yang, G. X., Li, Y. J., Safonova, I., Yi, S. X., Tong, L. L. & Seltmann, R. 2014a. Early Carboniferous volcanic rocks of West Junggar in the western Central Asian Orogenic Belt: implications for a supra-subduction system. International Geology Review 56, 823–44.
Yang, G. X., Li, Y. J., Santosh, M., Gu, P. Y., Yang, B. K., Zhang, B., Wang, H. B., Zhong, X. & Tong, L. L. 2012b. A Neoproterozoic seamount in the Paleoasian Ocean: evidence from zircon U–Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar, NW China. Lithos 140–141, 5365.
Yang, G. X., Li, Y. J., Santosh, M., Yang, B. K., Yan, J., Zhang, B. & Tong, L. L. 2012c. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange, NW China: implications for a Devonian mantle plume within the Junggar Ocean. Journal of Asian Earth Sciences 59, 141–55.
Yang, G., Li, Y., Xiao, W. & Tong, L. 2015. OIB-type rocks within West Junggar ophiolitic mélanges: evidence for the accretion of seamounts. Earth-Science Reviews 150, 477–96.
Yang, G. X., Li, Y. J., Yan, J., Tong, L. L., Han, X. & Wang, Y. B. 2014b. Geochronological and geochemical constraints on the origin of the 304 ± 5 Ma Karamay A-type granites from West Junggar, Northwest China: implications for understanding the Central Asian Orogenic Belt. International Geology Review 56, 393407.
Yin, J. Y., Chen, W., Yuan, C., Yu, S., Xiao, W. J., Long, X. P., Li, J. & Sun, J. B. 2015. Petrogenesis of Early Carboniferous adakitic dikes, Sawur region, northern West Junggar, NW China: implications for geodynamic evolution. Gondwana Research 27, 1630–45.
Yin, J. Y., Long, X. P., Yuan, C., Sun, M., Zhao, G. C. & Geng, H. Y. 2013. A Late Carboniferous–Early Permian slab window in the West Junggar of NW China: geochronological and geochemical evidence from mafic to intermediate dikes. Lithos 175–176, 146–62.
Yin, J. Y., Yuan, C., Sun, M., Long, X. P., Zhao, G. C., Wong, K. P., Geng, H. Y. & Cai, K. 2010. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: geochemical features, petrogenesis and tectonic implications. Gondwana Research 17, 145–52.
Zhang, C., Huang, X. & Zhai, M. G. 1995. The geological characteristics, tectonic settings and ages of ophiolite in Western Junggar, Xinjiang. Collected Papers of the Institute of Geology: Beijing, Chinese Academy of Sciences 8, 165218 (in Chinese).
Zhang, Y. Y. & Guo, Z. J. 2010. New constraints on formation ages of ophiolites in northern Junggar and comparative study on their connection. Acta Petrologica Sinica 26, 421–30 (in Chinese with English abstract).
Zhang, C. L., Li, Z. X., Li, X. H., Xu, Y. G., Zhou, G. & Ye, H. M. 2010. A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China: Results of a ca. 275 Ma mantle plume? Geological Society of America Bulletin 122, 2020–40.
Zhang, C. L., Li, X. H., Li, Z. X., Ye, H. M. & Li, C. N. 2008. A Permian layered intrusive complex in the Western Tarim Block, northwestern China: product of a ca. 275 Ma mantle plume? The Journal of Geology 116, 269–87.
Zhang, J. E., Xiao, W. J., Han, C. M., Ao, S. J., Yuan, C., Sun, M., Geng, H. Y., Zhao, G. C., Guo, Q. Q. & Ma, C. 2011a. Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in Western Junggar, NW China. Gondwana Research 19, 958–74.
Zhang, J. E., Xiao, W. J., Han, C. M., Mao, Q. G., Ao, S. J., Guo, Q. Q. & Ma, C. 2011b. A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China. Lithos 125, 592606.
Zhang, C., Zhai, M. G., Allen, M. B., Saunders, A. D., Wang, G. R. & Huang, X. 1993. Implications of Paleozoic ophiolites from Western Junggar, NW China, for the tectonics of Central-Asia. Journal of the Geological Society, London 150, 551–61.
Zhang, X. & Zhang, H. 2014. Geochronological, geochemical, and Sr-Nd-Hf isotopic studies of the Baiyanghe A-type granite porphyry in the Western Junggar: implications for its petrogenesis and tectonic setting. Gondwana Research 25, 1554–69.
Zhang, C. L. & Zou, H. B. 2013. Comparison between the Permian mafic dykes in Tarim and the western part of Central Orogenic Belt (CAOB), NW China: implications for two mantle domains of the Permian Tarim Large Igneous Province. Lithos 174, 1527.
Zhang, C. L., Zou, H. B., Yao, C. Y. & Dong, Y. G. 2014. Origin of Permian gabbroic intrusions in the southern margin of the Altai Orogenic Belt: a possible link to the Permian Tarim mantle plume? Lithos 204, 112–24.
Zhao, L. & He, G. Q. 2013. Tectonic entities connection between West Junggar (NW China) and East Kazakhstan. Journal of Asian Earth Sciences 72, 2532.
Zhou, J. X. 1999. Geochemistry and Petrogenesis of Igneous Rocks Containing Amphibole and Mica: A Case Study of Plate Collision Involving Scotland and Himalayas. New York and Beijing: Science Press, pp. 4172.
Zhou, T. F., Yuan, F., Fan, Y., Zhang, D. Y., Cooke, D. & Zhao, G. C. 2008. Granites in the Saur region of the west Junggar, Xinjiang Province, China: geochronological and geochemical characteristics and their geodynamic significance. Lithos 106, 191206.
Zhu, Y. F., Chen, B. & Qiu, T. 2015. Geology and geochemistry of the Baijiantan-Baikouquan ophiolitic mélanges: implications for geological evolution of west Junggar, Xinjiang, NW China. Geological Magazine 152, 4169.
Zhu, Y. F. & Xu, X. 2006. The discovery of Early Ordovician ophiolite mélange in Taerbahatai Mts., Xinjiang, NW China. Acta Petrologica Sinica 22, 2833–42 (in Chinese with English abstract).
Zorin, Y. A., Turutanov, E. K., Kozhevnikov, V. M., Rasskazov, S. V. & Ivanov, A. V. 2006. The nature of Cenozoic upper mantle plumes in East Siberia (Russia) and Central Mongolia. Russian Geology and Geophysics 47, 1056–70.


Related content

Powered by UNSILO

Geochronological and geochemical studies of the OIB-type Baiyanghe dolerites: implications for the existence of a mantle plume in northern West Junggar (NW China)

  • XIU-QUAN MIAO (a1), XIN ZHANG (a1), HUI ZHANG (a2), JIN-RONG WANG (a1), ZHENG LIU (a1), CHENG-ZE LI (a1), QIANG SHI (a1), RUN-WU LI (a1), YAO-SHEN HUANG (a1) and QUAN-ZHENG MA (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.