Skip to main content Accessibility help
×
Home

Further evidence for an impact origin of the Tsenkher structure in the Gobi-Altai, Mongolia: geology of a 3.7 km crater with a well-preserved ejecta blanket

  • GORO KOMATSU (a1), JENS ORMÖ (a2), TOGOOKHUU BAYARAA (a3), TOMOKO ARAI (a4), KEISUKE NAGAO (a5), YOSHIHIRO HIDAKA (a6), NAOKI SHIRAI (a6), MITSURU EBIHARA (a6), CARL ALWMARK (a7), LKHAGVA GERELTSETSEG (a8), SHOOVDOR TSERENDUG (a3), KAZUHISA GOTO (a9), TAKAFUMI MATSUI (a4) and SODNOMSAMBUU DEMBEREL (a3)...

Abstract

The Tsenkher structure in the Gobi-Altai, Mongolia is a c. 3.7 km diameter crater with a well-preserved ejecta blanket. It has been hypothesized to be either of impact or volcanic origin in our previous work. Observations during our 2007 expedition and related sample analyses give further support for an impact origin. The evidence includes the presence of a structurally uplifted near-circular rim surrounded by an ejecta blanket, and abundant breccias, some of which are melt- and millimetre-scale spherule-bearing. Planar deformation features (PDFs) were found in one quartz grain in a breccia sample. Fe-rich grains are found in a vesicular melt sample that is also characterized by elevated platinum group element (PGE) abundances with respect to the sedimentary bedrock of the area (approximately an order of magnitude). Noble gas analysis of one breccia sample yielded an elevated 3He/4He value of (5.0±0.2) × 10−6. Although not conclusive alone, these geochemical results are consistent with a contribution of meteoritic components. A volcanic origin, in particular a maar formation, would require explanations for the unusual conditions associated with Tsenkher, including its large size occurring in isolation, the structurally uplifted rim and the lack of a bedded base surge deposit. A pronounced rampart structure observed at the eastern ejecta is also unusual for any volcanic origin. 40Ar–39Ar dating of a vesicular melt sample gives an age of the Tsenkher structure of 4.9±0.9 Ma. The rampart structure could provide insights into the formation of similar ejecta morphologies associated with numerous impact craters on Mars.

Copyright

Corresponding author

Author for correspondence: goro@irsps.unich.it

Footnotes

Hide All

present address: Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea

Footnotes

References

Hide All
Academy of Sciences of The Mongolian People's Republic. 1990. National Atlas of the Mongolian People's Republic. Ulaanbaatar and Moscow: Academy of Sciences of the Mongolian People's Republic (in Mongolian).
Baker, V. R. 2014. Terrestrial analogs, planetary geology, and the nature of geological reasoning. Planetary and Space Science 95, 510.
Barlow, N. G., Boyce, J. M., Costard, F. M., Craddock, R. A., Garvin, J. B., Sakimoto, S. E. H., Kuzmin, R. O., Roddy, D. J. & Soderblom, L. A. 2000. Standardizing the nomenclature of Martian impact crater ejecta morphologies. Journal of Geophysical Research 105, 26733–8.
Barry, T. L., Saunders, A. D., Kempton, P. D., Windley, B. F., Pringle, M. S., Dorjnamjaa, D. & Saandar, S. 2003. Petrogenesis of Cenozoic basalts from Mongolia: evidence for the role of asthenospheric versus metasomatised lithospheric mantle sources. Journal of Petrology 44, 5591.
Bushenkova, N. A., Deev, E. V., Dyagilev, G. S. & Gibsher, A. A. 2008. The upper mantle structure and Cenozoic volcanism in Central Mongolia. Doklady Earth Sciences 418, 128–31.
Cunningham, D. 2005. Active intracontinental transpressional mountain building in the Mongolian Altai: defining a new class of orogen. Earth and Planetary Science Letters 240, 436–44.
Cunningham, W. D., Windley, B. F., Owen, L. A., Barry, T., Dorjnamjaa, D. & Badamgarav, J. 1997. Geometry and style of partitioned deformation within a late Cenozoic transpressional zone in the eastern Gobi Altai Mountains, Mongolia. Tectonophysics 277, 285306.
De Hon, R. A. 1965. Maare of La Mesa. In Southwestern New Mexico II (eds Fitzsimmons, J. P. & Balk, C. L.), pp. 204–9. New Mexico Geological Society 16th Annual Fall Field Conference Guidebook.
Derevianko, A. P., Olsen, J. W. & Tsevendorj, D. (eds) 2000. Archaeological Studies Carried Out by the Joint Russian-Mongolian-American Expedition in Mongolia in 1997 & 1998. Novosibirsk: Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences.
Ebisawa, N., Sumino, H., Okazaki, R., Takigami, Y., Hirano, N., Nagao, K. & Kaneoka, I. 2004. Construction of I-Xe and 40Ar–39Ar dating system using a modified VG3600 mass spectrometer and the first I-Xe data obtained in Japan. Journal of the Mass Spectrometry Society of Japan 52, 219–29.
Emmons, R. C. 1943. The Universal Stage (With Five Axes of Rotation). Geological Society of America Memoir 8. New York: Geological Society of America, 205 pp.
Ferrière, L., Morrow, J. R., Amgaa, T. & Koeberl, C. 2009. Systematic study of universal-stage measurements of planar deformation features in shocked quartz: implications for statistical significance and representation of results. Meteoritics & Planetary Science 44, 925–40.
Fisher, R. V. & Waters, A. C. 1970. Base surge bed forms in maar volcanoes. American Journal of Science 268, 157–80.
French, B. M. 1998. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Houston: Lunar and Planetary Institute, 120 pp.
Geological Maps of Mongolia. 1990. Geological Maps of Mongolia (1:500000). Moscow: Glavgeologorazvedka (in Russian).
Gevrek, A. I. & Kazanci, N. 2000. A Pleistocene, pyroclastic-poor maar from central Anatolia, Turkey: influence of a local fault on a phreatomagmatic eruption. Journal of Volcanology and Geothermal Research 95, 309–17.
Grant, J. A. 1999. Evaluating the evolution of process specific degradation signatures around impact craters. International Journal of Impact Engineering 23, 331–40.
Grant, J. A., Koeberl, C., Reimold, W. U. & Schultz, P. H. 1997. Gradation of the Roter Kamm impact crater, Namibia. Journal of Geophysical Research 102, 16327–38.
Grieve, R. A. F. 1987. Terrestrial impact structures. Annual Review of Earth and Planetary Sciences 15, 245–70.
Gutmann, J. T. 1976. Geology of Crater Elegante, Sonora, Mexico. Geological Society of America Bulletin 87, 1718–29.
Jourdan, F., Moynier, F., Koeberl, C. & Eroglu, S. 2011. 40Ar/39Ar age of Lonar crater and consequence for the geochronology of planetary impacts. Geology 39, 671–4.
Kenkmann, T. & Schönian, F. 2006. Ries and Chicxulub: impact craters on Earth provide insights for Martian ejecta blankets. Meteoritics and Planetary Science 41, 1587–604.
Koeberl, C. 1998. Identification of meteoritic component in impactites. In Meteorites: Flux with Time and Impact Effects (eds Grady, M. M., Hutchinson, R., McCall, G. J. H. & Rothery, R. A.), pp. 133–53. London: The Geological Society.
Komatsu, G. 2007. Rivers in the Solar System: water is not the only fluid flow on planetary bodies. Geography Compass 1/3, 480502.
Komatsu, G., Brantingham, P. J., Olsen, J. W. & Baker, V. R. 2001. Paleoshoreline geomorphology of Böön Tsagaan Nuur, Tsagaan Nuur and Orog Nuur: the Valley of Lakes, Mongolia. Geomorphology 39, 8398.
Komatsu, G., Kumar, P. S., Goto, K., Sekine, Y., Giri, C. & Matsui, T. 2014. Drainage systems of Lonar Crater, India: contributions to Lonar Lake hydrology and crater degradation. Planetary and Space Science 95, 4555.
Komatsu, G. & Olsen, J. W. 2002. Geological and archaeological exploration of caves in Mongolia. Cave and Karst Science 29, 7586.
Komatsu, G., Olsen, J. W. & Baker, V. R. 1998. A possible impact crater structure in southern Mongolia. In Lunar and Planetary Science Conference XXVVI, Houston, Texas. Abstract #1226.
Komatsu, G., Olsen, J. W. & Baker, V. R. 1999. Field observation of a possible impact structure (Tsenkher Structure) in southern Mongolia. In Lunar and Planetary Science Conference XXX, Houston, Texas. Abstract #1041.
Komatsu, G., Olsen, J. W., Ormö, J., Di Achille, G., Kring, D. A. & Matsui, T. 2006. The Tsenkher structure in the Gobi-Altai, Mongolia: geomorphological hints of an impact origin. Geomorphology 74, 164–80.
Komatsu, G., Ori, G. G., Marinangeli, L. & Moersch, J. E. 2007 a. Playa environments on Earth: possible analogs for Mars. In The Geology of Mars: Evidence from Earth-Based Analogs (ed. Chapman, M. G.), pp. 322–48. Cambridge: Cambridge University Press.
Komatsu, G., Ori, G. G., Rossi, A. P., Di Lorenzo, S. & Neukum, G. 2007 b. Combinations of processes responsible for Martian impact crater “layered ejecta structures” emplacement. Journal of Geophysical Research 112, E06005. doi: 10.1029/2006JE002787.
Kumar, P. S., Head, J. W. & Kring, D. A. 2010. Erosional modification and gully formation at Meteor Crater, Arizona: insights into crater degradation processes on Mars. Icarus 208, 608–20.
Lehmkuhl, F. & Lang, A. 2001. Geomorphological investigations and luminescence dating in the southern part of the Khangay and the Valley of the Gobi Lakes (Central Mongolia). Journal of Quaternary Science 16, 6987.
Maloof, A. C., Stewart, S. T., Weiss, B. P., Soule, S. A., Swanson-Hysell, N. L., Louzada, K. L., Garrick-Bethell, I. & Poussart, P. M. 2010. Geology of Lonar Crater. Geological Society of America Bulletin 122, 109–26.
Melosh, H. J. 1989. Impact Cratering: A Geologic Process. New York: Oxford University Press, 245 pp.
Middleton, G. V. 1970. Experimental studies related to problems of flysch sedimentation. In Flysh Sedimentology in North America (ed. Lajoie, J.), pp. 253–72. Geological Association of Canada Special Paper no. 7.
Misra, S., Newsom, H. E., Prasad, M. S., Geissman, J. W., Dube, A. & Sengupta, D. 2009. Geochemical identification of impactor for Lonar crater, India. Meteoritics & Planetary Science 44, 1001–18.
Mouginis-Mark, P. J. 1981. Ejecta emplacement and modes of formation of Martian fluidized ejecta craters. Icarus 45, 6076.
Mouginis-Mark, P. J. & Baloga, S. M. 2006. Morphology and geometry of the distal ramparts of Martian impact craters. Meteoritics & Planetary Science 41, 1469–82.
Nakamura, A., Yokoyama, Y., Sekine, Y., Goto, K., Komatsu, G., Senthil Kumar, P., Matsuzaki, H., Kaneoka, I. & Matsui, T. 2014. Formation and geomorphologic history of the Lonar impact crater deduced from in situ cosmogenic 10Be and 26Al. Geochemistry, Geophysics, Geosystems 15 (8), 3190–7.
Nishiizumi, K., Kohl, C. P., Shoemaker, J. R., Arnold, J. R., Klein, J., Fink, D. & Middleton, R. 1991. In situ 10Be and 26Al exposure ages at Meteor Crater, Arizona. Geochimica et Cosmochimica Acta 55, 2699–703.
Official Development Assistance Project of The Czech Republic (ODAPCR). 2003. Geological and Geochemical Mapping of the Trans-Altai Gobi at a scale of 1:200,000 – Sheet K-47-III. Geological Survey in Mongolia, GEOMIN Cooperative Company Jihlava and the Office of Geological Investigation in Ulaanbaatar, 131 pp.
Ormö, J., Gomez-Ortiz, D., Komatsu, G., Bayaraa, T. & Tserendug, S. 2010. Geophysical survey of the proposed Tsenkher impact structure, Gobi Altai, Mongolia. Meteoritics & Planetary Science 45, 373–82.
Osae, S., Misra, S., Koeberl, C., Sengupta, D. & Ghosh, S. 2005. Target rocks, impact glasses and melt rocks from the Lonar impact crater, India: petrography and geochemistry. Meteoritics & Planetary Science 40, 1473–92.
Park, J.-W., Hu, Z., Gao, S., Campbell, I. H. & Gong, H. 2012. Platinum group element abundances in the upper continental crust revisited – new constraints from analyses of Chinese loess. Geochimica et Cosmochimica Acta 93, 6376.
Phillips, F. M., Zreda, M. G., Smith, S. S., Elmore, D., Kubik, P. W., Dorn, R. I. & Roddy, D. J. 1991. Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish. Geochimica et Cosmochimica Acta 55, 2695–8.
Poelchau, M. H., Kenkmann, T. & Kring, D. A. 2009. Rim uplift and crater shape in Meteor Crater: effects of target heterogeneities and trajectory obliquity. Journal of Geophysical Research 114, E01006. doi: 10.1029/2008JE003235.
Pouliquen, O. & Vallance, J. W. 1999. Segregation induced instabilities of granular fonts. Chaos 9, 621–9.
Reinhard, M. 1931. Universaldrehtischmethoden. Basel, Switzerland: Birkhäuser, 118 pp.
Schumm, S. A. 1988. Variability of the fluvial system in space and time. In Scales and Global Change (eds Rosswall, T., Woodmansee, R. G. & Risser, P. G.), pp. 225–50. New York: Wiley.
Sengör, A. M. C. & Natal'in, B. A. 1996. Paleotectonics of Asia: fragments of a synthesis. In The Tectonic Evolution of Asia (eds Yin, A. & Harrison, M.), pp. 486640. Cambridge: Cambridge University Press.
Shirai, N. & Ebihara, M. 2004. Chemical characteristics of a Martian meteorite, Yamato 980459. Antarctic Meteorite Research 17, 5567.
Shirai, N., Nishino, T., Li, X., Amakawa, H. & Ebihara, M. 2003. Precise determination of PGE in a GSJ reference sample JP-1 by ID-ICPMS after nickel sulfide fire assay preconcentration. Geochemical Journal 37, 531–6.
Stöffler, D. & Grieve, R. A. F. 1994. Classification and nomenclature of impact metamorphic rocks: a proposal to the IUGS Subcommission on the Systematics of Metamorphic Rocks. In Lunar and Planetary Science Conference XXV, Houston, Texas, pp. 1347–8.
Stöffler, D. & Grieve, R. A. F. 2007. Impactites. In Metamorphic Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences (eds Fettes, D. & Desmons, J.), pp. 8292. Cambridge: Cambridge University Press.
Stöffler, D. & Langenhorst, F. 1994. Shock metamorphism of quartz in nature and experiment: I. Basic observations and theory. Meteoritics 29, 155–81.
Sturkell, E. R. R. & Ormö, J. 1997. Impact-related clastic injections in the marine Ordovician Lockne impact structure, Central Sweden. Sedimentology 44, 793804.
Sturm, S., Wulf, G., Jung, D. & Kenkmann, T. 2012. Impact ejecta modeling of the Bunte Breccia Deposits of the Ries Impact Crater, Southern Germany. In 43rd Lunar and Planetary Science Conference, Texas. Abstract #1770.
Wada, K. & Barnouin-Jha, O. S. 2006. The formation of fluidized ejecta on Mars by granular flow. Meteoritics & Planetary Science 41, 1551–69.
Weiss, D. K. & Head, J. W. 2014. Ejecta mobility of layered ejecta craters on Mars: assessing the influence of snow and ice deposit. Icarus 233, 131–46.
Weiss, B. P., Pedersen, S., Garrick-Bethell, I., Stewart, S. T., Louzada, K. L., Maloof, A. C. & Swanson-Hysell, N. L. 2010. Paleomagnetism of impact spherules from Lonar crater, India and a test for impact-generated fields. Earth and Planetary Science Letters 298, 6676.
Xiao, Z. & Komatsu, G. 2013. Impact craters with ejecta flows and central pits on Mercury. Planetary and Space Science 82–83, 6278.
Yarmolyuk, V. V., Kudryashova, E. A., Kozlovsky, A. M. & Savatenkov, V. M. 2007. Late Cretaceous–Early Cenozoic volcanism of southern Mongolia: a trace of the South Khangai mantle hot spot. Journal of Volcanology and Seismology 1, 127.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed