Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T07:38:16.843Z Has data issue: false hasContentIssue false

Correlation of the base of the Serpukhovian Stage (Mississippian) in NW Europe

Published online by Cambridge University Press:  22 August 2013

GEORGE D. SEVASTOPULO*
Affiliation:
Department of Geology, Trinity College Dublin, Dublin, Ireland
MILO BARHAM
Affiliation:
Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
*
Author for correspondence: gsvstpul@tcd.ie

Abstract

The Task Group charged with proposing the GSSP for the base of the Serpukhovian Stage (Mississippian, Lower Carboniferous) is likely to use the global First Appearance Datum (FAD) of the conodont Lochriea ziegleri in the lineage Lochriea nodosaL. ziegleri for the definition and correlation of the base of the stage. It is important to establish that the FAD of L. ziegleri in different basins is penecontemporaneous. Ammonoids provide high-resolution biostratigraphy in the Late Mississippian but their use in international correlation is limited by provincialism. However, it is possible to assess the levels of diachronism of the First Occurrence Datum (FOD) of L. ziegleri in sections in NW Europe using ammonoid zones. Published conodont distribution in the Rhenish Slate Mountains of Germany show the FOD of L. ziegleri in the Emstites novalis Biozone (upper part of the P2c zone of the UK and Ireland) but L. ziegleri has also been reported as occurring in the Neoglyphioceras spirale Biozone (P1d zone). In the Yoredale Group of northern England, the FOD of L. ziegleri is in either the P1c or P1d zone. In NW Ireland, the oldest records of both L. nodosa and L. ziegleri are from the Lusitanoceras granosum Biozone (P2a). Although there is some discrepancy in the recorded levels of the FOD of L. ziegleri in NW Europe, this may be as a result of collection failure. The base of the Serpukhovian based on the FAD of Lochriea ziegleri will be in the middle of the Brigantian regional Substage.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, R. J., Austin, R. L. & Husri, S. 1968. Viséan conodonts from North Wales and Ireland. Nature 219, 255–8.Google Scholar
Austin, R. L. & Husri, S. 1974. Dinantian conodont faunas of County Clare, County Limerick and County Leitrim. In International Symposium on Belgian Micropaleontological Limits from Emsian to Viséan, Namur (eds Bouckaert, J. & Streel, M.), pp. 1869. Geological Survey of Belgium.Google Scholar
Bischoff, G. 1957. Die conodonten-stratigraphie des rheno-herzynischen unterkarbons mit berucksichtigung der Wocklumeria-Stufe und der Devon/Karbon-grenze. Abhandlungen der Hessischen Landesamt für Bodenforschung 19, 164.Google Scholar
Brandon, A. & Hodson, F. 1984. The stratigraphy and palaeontology of the late Viséan and early Namurian rocks of north-east Connaught. Geological Survey of Ireland, Special Paper no. 6, 54 pp.Google Scholar
Branson, E. B. & Mehl, M. G. 1941. New and little known conodont genera. Journal of Paleontology 15, 97106.Google Scholar
Clarke, W. J. 1960. Scottish Carboniferous conodonts. Transactions of the Edinburgh Geological Society 18, 131.CrossRefGoogle Scholar
Cowie, J. W. 1986. Guidelines for boundary stratotypes. Episodes 9, 7882.Google Scholar
Davies, R. B., Austin, R. L. & Moore, D. 1993. Environmental controls of Brigantian conodont-distribution: evidence from the Gayle Limestone of the Yoredale Group in northern England. Annales de la Société Géologique de Belgique 116/2, 221–41.Google Scholar
George, T. N., Johnson, G. A. L., Mitchell, M., Prentice, J. E., Ramsbottom, W. H. C., Sevastopulo, G. D. & Wilson, R. B. 1976. A Correlation of Dinantian Rocks in the British Isles. Geological Society of London, Special Report No. 7.Google Scholar
Gibshman, N. 2003. Foraminifers from the Serpukhovian Stage Stratotype, the Zaborie Quarry site (Moscow region). Stratigraphy and Geological Correlation 11, 3660.Google Scholar
Groessens, E. 1971. Les conodontes du Tournaisien supérieur de la Belgique—note preliminaire. Geological Survey of Belgium Professional Paper no. 4, 28 pp.Google Scholar
Groves, J. R., Wang, Y., Qi, Y., Richards, B. C., Ueno, K. & Wang, X. 2012. Foraminiferal biostratigraphy of the Visean-Serpukhovian (Mississippian) boundary interval at slope and platform sections in Southern Guizhou (South China). Journal of Paleontology 86/5, 753–74.Google Scholar
Heckel, P. H. & Clayton, G. 2006. The Carboniferous system, use of the new official names for the subsystems, series and stages. Geologica Acta 4, 403–7.Google Scholar
Hicks, P. F. 1959. The Yoredale rocks of Ingleborough, Yorkshire. Proceedings of the Yorkshire Geological Society 32, 3144.Google Scholar
Higgins, A. C. 1975. Conodont zonation of the Late Visean and Early Westphalian strata of the south and central Pennines of northern England. Bulletin of the Geological Survey of Great Britain 53, 190.Google Scholar
Kabanov, P. B. 2003. Serpukhovian Stage Stratotype in the Zabor'e quarry, Part 1: lithofacies characterization. Stratigrafiya Geologicheskaya Korrelyatsiya 11, 2038.Google Scholar
Kabanov, P. B., Alekseeva, T. V. & Alekseev, A. O. 2012. Serpukhovian Stage (Carboniferous) in type area: sedimentology, mineralogy, geochemistry and section correlation. Stratigraphy and Geological Correlation 20, 1541.Google Scholar
Kaiser, S. I. 2009. The Devonian/Carboniferous boundary stratotype section (La Serre, France) revisited. Newsletters on Stratigraphy 43, 195205.Google Scholar
Korn, D. 1990. On the Upper Viséan P goniatite succession in North Leitrim. Irish Journal of Earth Sciences 10, 109–14.Google Scholar
Korn, D. 1996. Revision of the Late Visean goniatite stratigraphy. Annales de la Société Géologique de Belgique 117, 205–12.Google Scholar
Korn, D. 2010. Lithostratigraphy and biostratigraphy of the Kulm succession in the Rhenish Mountains. Zeitschrift der Deutschen Gesellschaft für Geowissenschafte 161, 431–53.Google Scholar
Korn, D., Sudar, M., Novak, M. & Jovanović, D. 2010. The palaeogeographic position of the Jadar Block (Vardar Zone, NW Serbia) in the Early Carboniferous. Scientific Annals, School of Geology, Aristotle University of Thessaloniki, Special Volume 100, 141–7.Google Scholar
Korn, D. & Titus, A. L. 2011. Goniatites Zone (middle Mississippian) ammonoids of the Antler Foreland Basin (Nevada, Utah). Bulletin of Geosciences 86, 107–96.CrossRefGoogle Scholar
McGhee, G. R., Clapham, M. E., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. 2013. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology 370, 260–70.Google Scholar
McGhee, G. R., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. 2012. Ecological ranking of Phanerozoic biodiversity crises: The Serpukhovian (early Carboniferous) crisis had a greater ecological impact than the end-Ordovician. Geology 40, 147–50.Google Scholar
Meischner, D. 1967. Conodonten-chronologie des deutschen Karbons. Compte Rendu 6ème Congrés International de Stratigraphie et de Géologie Carbonifère, Sheffield 1967, vol. 3, 1169–80.Google Scholar
Meischner, D. 1970. Conodonten-chronologie des deutschen karbons. Compte Rendu 6ème Congrés Internationale Stratigraphie et Géologie du Carbonifère, Sheffield 1967, 3, 1169–80.Google Scholar
Meischner, D. 1995. Rheinisches Schiefergebirge, Germany. In Conodont Distribution Across the Viséan/Namurian Boundary (eds Skompski, S., Alekseev, A., Meischner, D., Nemirovskaya, T., Perret, M.-F. & Varker, W. J.), pp. 183–6. Courier Forschungsinstitut Senckenberg 188.Google Scholar
Metcalfe, I. 1981. Conodont zonation and correlation of the Dinantian and early Namurian strata of the Craven lowlands of Northern England. Report of the Institute of Geological Sciences 80/10, 1–70.Google Scholar
Nemirovskaya, T., Perret, M.-F. & Meischner, D. 1994. Lochriea ziegleri and Lochriea senckenbergica – new conodont species from the latest Viséan and Serpukhovian in Europe. Courier Forschungsinstitut Senckenberg 168, 311–17.Google Scholar
Nemyrovska, T. I. 2005. Late Viséan/early Serpukhovian conodont succession from the Triollo section, Palencia (Cantabrian Mountains, Spain). Scripta Geologica 129, 1389.Google Scholar
Nemyrovska, T. I., Wagner, R. H., Winkler Prins, C. F. & Montañez, I. 2011. Conodont faunas across the mid-Carboniferous boundary from the Barcaliente Formation at La Lastra (Palentian Zone, Cantabrian Mountains, northwest Spain); geological setting, sedimentological characters and faunal descriptions. Scripta Geologica 143, 127–83.Google Scholar
Nikitin, S. N. 1890. Carboniferous deposits of the Moscow region and artesian waters near Moscow. Trudy Geologicheskogo Komiteta 5 (5), 1182 (in Russian).Google Scholar
Nikolaeva, S. V., Gibshman, N. B., Kulagina, E. I., Barskov, I. S. & Pazukhin, V. N. 2002. Correlation of the Viséan-Serpukhovian boundary in its type region (Moscow Basin) and the South Urals and a proposal of boundary markers (ammonoids, foraminifers, conodonts). Newsletter on Carboniferous Stratigraphy 20, 1621.Google Scholar
Nikolaeva, S. V., Kulagina, E. I., Pazukhin, V. N., Kochetova, N. N. & Konovalova, V. A. 2009. Paleontology and microfacies of the Serpukhovian in the Verkhnyaya Kardailovka section, South Urals, Russia: potential candidate for the GSSP for the Viséan-Serpukhovian boundary. Newsletters on Stratigraphy 43, 165–93.Google Scholar
Pazukhin, V. N., Kulagina, E. I., Nikolaeva, S. V., Kochetova, N. N. & Konovalova, V. A. 2010. The Serpukhovian in the Verkhnyaya Kardailovka section, south Urals. Stratigraphy and Geological Correlation 18, 269–89.CrossRefGoogle Scholar
Pazukhin, V. N. & Nemirovskaya, T. 1992. Description of organic remains: conodonts. In Lower/Middle Carboniferous Boundary in the Southern Urals and in Central Tien-Shan (eds Kulagina, E. I., Rumiantseva, Z. S., Pazukhin, V. N. & Kotchetova, N. N.), pp. 87–8. Moscow: Nauka (in Russian).Google Scholar
Purnell, M. A. & Donoghue, P. C. J. 1998. Skeletal architecture, homologies and taphonomy of ozarkodinid conodonts. Palaeontology 41, 57102.Google Scholar
Qi, Y., Wang, X., Richards, B. C., Groves, J. R., Ueno, K., Wang, Z., Wu, X. & Hu, K. 2010. Recent progress on conodonts and foraminifers from the candidate GSSP of the Carboniferous Visean-Serpukhovian boundary in the Naqing (Nashui) section of south China. In Carboniferous Carbonate Succession from Shallow Marine to Slope in Southern Guizhou (eds Wang, X., Qi, Y., Groves, J., Barrick, J., Nemirovskaya, T. & Ueno, K.), pp. 3564. Field Excursion Guidebook for the SCCS Workshop on GSSPs of the Carboniferous System, Nanjing Institute of Geology and Palaeontology (Chinese Academy of Sciences).Google Scholar
Ramsbottom, W. H. C. 1974. Dinantian. In The Geology and Mineral Resources of Yorkshire. (eds Rayner, D. H. & Hemingway, J. E.), pp. 4773. Leeds: Yorkshire Geological Society.Google Scholar
Rayner, D. H. 1953. The Lower Carboniferous rocks in the north of England. Proceedings of the Yorkshire Geological Society 28, 231315.Google Scholar
Rhodes, F. H. T., Austin, R. L. & Druce, E. C. 1969. British Avonian (Carboniferous) conodont faunas, and their value in local and intercontinental correlation. Bulletin of the British Museum (Natural History) Geology Supplement 5, 313 pp.CrossRefGoogle Scholar
Richards, B. C. 2003. Progress report from the Task Group to establish a GSSP close to the existing Viséan-Serpukhovian Boundary. Newsletter on Carboniferous Stratigraphy 21, 610.Google Scholar
Riley, N. J. 1993. Dinantian (Lower Carboniferous) biostratigraphy and chronostratigraphy in the British Isles. Journal of the Geological Society 150, 427–46.Google Scholar
Rygel, M. C., Fielding, C. R., Frank, T. D. & Birgenheier, L. P. 2008. The magnitude of Late Paleozoic glacioeustatic fluctuations: a synthesis. Journal of Sedimentary Research 78, 500–11.Google Scholar
Schmitz, M. D. & Davydov, V. I. 2012. Quantitative radiometric and biostratigraphic calibration of the Pennsylvanian–Early Permian (Cisuralian) time scale and Pan-Euramerican chronostratigraphic correlation. Geological Society of America Bulletin 127, 549–77.Google Scholar
Sevastopulo, G. D. & Nudds, J. R. 1987. Courceyan (early Dinantian) biostratigraphy of Britain and Ireland; coral and conodont zones compared. In Selected Studies in Carboniferous Paleontology and Biostratigraphy (eds Brenckle, P. L., Lane, H. R. & Manger, W. L.), pp. 3946. Courier Forschungsinstitut Senckenberg 98.Google Scholar
Skompski, S., Alekseev, A., Meischner, D., Nemirovskaya, T., Perret, M.-F. & Varker, W. J. 1995. Conodont distribution across the Viséan/Namurian boundary. Courier Forschungsinstitut Senckenberg 188, 177209.Google Scholar
Varker, W. J. 1993. Multielement conodont faunas from the proposed mid-Carboniferous boundary stratotype locality at Stonehead Beck, Cowling, North Yorkshire, England. Annales de la Société Géologique de Belgique 116, 301–21.Google Scholar
Varker, W. J. 1995. The north of England. In Conodont Distribution across the Viséan/Namurian Boundary (eds Skompski, S., Alekseev, A., Meischner, D., Nemirovskaya, T., Perret, M.-F. & Varker, W. J.), pp. 177209. Courier Forschungsinstitut Senckenberg 188.Google Scholar
Wirth, M. 1967. Zur Gliederung des höheren Paläozoikums (Givet-Namur) im Gebiet des Quinto Real (Westepyrenäen) mit Hilfe von Conodonten. Neues Jahrbuch für Geologie und Paläontologie, Abhandlunge 127, 179344.Google Scholar
Work, D. M. 2008. Secretary Editor's Report 2007–2008. Newsletter on Carboniferous Stratigraphy 26, 4.Google Scholar