Skip to main content Accessibility help
×
Home

Contrasting subduction–exhumation paths in the blueschists of the Anarak Metamorphic Complex (Central Iran)

  • S. ZANCHETTA (a1), N. MALASPINA (a1), A. ZANCHI (a1), L. BENCIOLINI (a2), S. MARTIN (a3), H.R. JAVADI (a4) and M. KOUHPEYMA (a4)...

Abstract

The Anarak Metamorphic Complex, localized in Central Iran, is a fossil accretionary wedge composed of several tectonometamorphic units. Some of these, the Chah Gorbeh, the Morghab and the Ophiolitic complexes, contain mafic rocks that have been metamorphosed at high-pressure–low-temperature conditions. Such units have been stacked together and later refolded during the final stages of exhumation. Structural analysis at the mesoscale recognized at least three deformation events. Microstructural analyses, mineral chemistry and thermodynamic modelling reveal that the mafic schists followed contrasting P–T paths during their tectonometamorphic evolutions. In the schists of the Chah Gorbeh and Ophiolitic complexes an early greenschist-facies stage was later overprinted by blueschist-facies phase assemblages with suggested peak conditions of 390–440°C at 0.6–0.9 GPa for the meta-basalt within the Ophiolitic Complex and 320–380°C at 0.6–0.9 GPa for the blueschists of the Chah Gorbeh Complex. P–T conditions at metamorphic peak were 410–450°C at 0.78–0.9 GPa for the Morghab blueschists, but they are reached before a greenschist-facies re-equilibration. Compositional zoning of amphiboles and epidotes of this greenschist-facies stage suggests a renewed pressure increase at the end of this metamorphic stage. Based on these data we reconstructed a clockwise P–T path for the Morghab mafic schists and a counter-clockwise path for the Chah Gorbeh blueschists and ophiolitic meta-basalts. Such contrasting metamorphic evolutions of tectonic units that were later accreted to the same wedge are indicative of the complex tectonic dynamics that occur within accretionary–subduction complexes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Contrasting subduction–exhumation paths in the blueschists of the Anarak Metamorphic Complex (Central Iran)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Contrasting subduction–exhumation paths in the blueschists of the Anarak Metamorphic Complex (Central Iran)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Contrasting subduction–exhumation paths in the blueschists of the Anarak Metamorphic Complex (Central Iran)
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: stefano.zanchetta@unimib.it

References

Hide All
Agard, P., Monié, P., Gerber, W., Omrani, J., Molinaro, M., Meyer, B. & Yamato, P. 2006. Transient, synobduction exhumation of Zagros blueschists inferred from P–T, deformation, time, and kinematic constraints: implications for Neotethyan wedge dynamics. Journal of Geophysical Research: Solid Earth 111 B11401, doi: 10.1029/2005JB004103.
Agard, P., Searle, M. P., Alsop, G. I. & Dubacq, B. 2010. Crustal stacking and expulsion tectonics during continental subduction: P–T deformation constraints from Oman. Tectonics 29, TC5018, doi: 10.1029/2010TC002669.
Angiboust, S., Agard, P., Glodny, J., Omrani, J. & Oncken, O. 2016. Zagros blueschists – episodic underplating and long-lived cooling of a subduction zone. Earth and Planetary Science Letters 443, 4858.
Angiolini, L., Gaetani, M., Muttoni, G., Stephenson, M. H. & Zanchi, A. 2007. Tethyan oceanic currents and climate gradients 300 my ago. Geology 35, 1071–4.
Bagheri, S. & Stampfli, G. M. 2008. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451, 123–55.
Balini, M., Nicora, A., Berra, F., Garzanti, F., Levera, M., Mattei, M., Muttoni, M., Zanchi, A., Bollati, I., Larghi, C., Zanchetta, S., Salamati, R. & Mossavvari, F. 2009. The Triassic stratigraphic succession of Nakhlak (central Iran), a record from an active margin. In South Caspian to Central Iran Basins (eds Brunet, M. F., Wilmsen, M. & Granath, J. W.), pp. 287321. Geological Society of London, Special Publication no. 312.
Banno, S., Shibakusa, H., Enami, M., Wang, C.-L. & Ernst, W. G. 2000. Chemical fine structure of Franciscan jadeitic pyroxene from Ward Creek, Cazadero area, California. The American Mineralogist 85, 1795–8.
Berra, F., Zanchi, A., Angiolini, L., Vachard, D., Vezzoli, G., Zanchetta, S., Bergomi, M., Javadi, H. R., Kouhpeyma, M. 2017. The upper Palaeozoic Godar-e-Siah Complex of Jandaq: evidence and significance of a North Palaeotethyan succession in Central Iran. Journal of Asian Earth Sciences 138, 272–90.
Buchs, D. M., Bagheri, S., Martin, K., Hermann, J. & Arculus, R. 2013. Paleozoic to Triassic ocean opening and closure preserved in Central Iran: constraints from the geochemistry of meta-igneous rocks of the Anarak area. Lithos 172–173, 267–87.
Cloos, M. 1982. Flow mélange: numerical modelling and geologic constrain on their origin in the Franciscan subduction complex, California. Geological Society of America Bulletin 93, 330–44.
Cloos, M. & Shreve, R. L. 1988a. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. background and description. Pure and Applied Geophysics 128, 455500.
Cloos, M. & Shreve, R. L. 1988b. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. implications and discussion. Pure and Applied Geophysics 128, 501–45.
Connolly, J. A. D. 2005. Multivariable phase diagrams: an algorithm based on generalized thermodynamics. American Journal of Science 290, 666718.
Dale, J., Powell, R., White, R. W., Elmer, F. L. & Holland, T. J. B. 2005. A thermodynamic model for Ca-Na clinoamphiboles in Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O for petrological calculations. Journal of Metamorphic Geology 23, 771–91.
Ernst, W. G. 1973. Blueschist metamorphism and P–T regimes in active subduction zones. Tectonophysics 17, 255–72.
Ernst, W. G. 1988. Tectonic history of subduction zones inferred from retrograde blueschist P–T paths. Geology 16, 1081–4.
Evans, B. W. 1990. Phase relations of epidote-blueschists. Lithos 35, 323.
Gaetani, M., Angiolini, L., Ueno, K., Nicora, A., Stephenson, M. H., Sciunnach, D., Rettori, R., Price, G. D. & Sabouri, J. 2009. Pennsylvanian–Early Triassic stratigraphy in the Alborz Mountains (Iran). In South Caspian to Central Iran Basins (eds Brunet, M. F., Wilmsen, M. & Granath, J. W.), pp. 79128. Geological Society of London, Special Publication no. 312.
Gerya, T. & Stockhert, B. 2006. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. International Journal of Earth Sciences 95, 250–74.
Gerya, T. V., Stockhert, B. & Perchuk, A. L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics 21, 6-1619.
Ghasemi, A. M. & Talbot, C. J. 2006. A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). Journal of Asian Earth Sciences 26, 683–93.
Grapes, R. H. & Hoskin, P. W. 2004. Epidote group minerals in low-medium pressure metamorphic terranes. In Epidotes (eds Liebscher, A. & Franz, G.), pp. 301–55. Reviews in Mineralogy and Geochemistry 56.
Holland, T. J. B. & Powell, R. 1998. An internally consistent thermodynamic data set for phases of petrologic interest. Journal of Metamorphic Geology 16, 309–43.
Holland, T. J. B. & Powell, R. 2003. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology 145, 492501.
Hsu, K. J. 1968. Principles of mélanges and their bearing on the Franciscan-Knoxville paradox. Geological Society of America Bulletin 79, 1063–74.
Kress, V. C. & Carmichael, I. S. E. 1988. Stoichiometry of the iron oxidation reaction in silicate melts. American Mineralogist 73, 1267–74.
Kruse, P. D. & Zhuralev, A. Yu. 2008. Middle–Late Cambrian Rankenella–Girvanella reefs of the Mila Formation Northern Iran. Canadian Journal of Earth Sciences 45, 619–39.
Mattei, M., Cifelli, F., Muttoni, G. & Rashid, H. 2015. Post-Cimmerian (Jurassic–Cenozoic) paleogeography and vertical axis rotation of Central Iran and the Alborz Mountains. Journal of Asian Earth Sciences 102, 92101.
Mel'nikov, B. N., Rozanov, A. Yu., Susov, M. V. & Fonin, V. D. 1986. Pervye arkheotsiaty iz nizhengo kembriya tsentral'nogo Irana (First archaeocyaths from the Lower Cambrian of central Iran). Izvestiya, Akademiya Nauk SSSR 7, 134–8.
Muttoni, M., Mattei, M., Balini, M., Zanchi, A., Gaetani, M. & Berra, F. 2009. The drift history of Iran from the Ordovician to the Triassic. In South Caspian to Central Iran Basins (eds Brunet, M. F., Wilmsen, M. & Granath, J. W.), pp. 729. Geological Society of London, Special Publication no. 312.
Şengör, A. M. C. 1979. Mid-Mesozoic closure of Tethys and its implications. Nature 279, 590–3.
Sharkovski, M., Susov, M. & Krivyakin, B. 1984. Geology of the Anarak Area (Central Iran). Explanatory Text of the Anarak Quadrangle Map 1:250000. Geological Survey of Iran, V/O “Tecnoexport” USSR Ministry of Geology Reports, 19.
Sheikholeslami, M. R. & Kouhpeyma, M. 2012. Structural analysis and tectonic evolution of the eastern Binalud Mountains, NE Iran. Journal of Geodynamics 61, 2346.
Torabi, G. 2012. Late Permian post-ophiolitic trondhjemites from Central Iran: a mark of subduction role in growth of Paleozoic continental crust. Island Arcs 21, 215–29.
Ukar, E. 2012. Tectonic significance of low-temperature blueschists blocks in the Franciscan mélange at san Simeon, California. Tectonophysics 568–569, 154–69.
Ukar, E. & Cloos, M. 2014. Low-temperature blueschist-facies mafic blocks in the Franciscan mélange, San Simeon, California. Geological Society America Bulletin, B30876.1, doi: 10.1130/B30876.1.
Wilson, A. D. 1955. Determination of ferrous iron in rocks and minerals. Bulletin of the Geological Survey of Great Britain 9, 56–8.
Yamato, P., Agard, P., Goffé, B., de Andrade, V., Vidal, O. & Jolivet, L. 2007. New, high precision P–T estimates for Oman blueschists: implications for obduction, nappe stacking and exhumation processes. Journal of Metamorphic Geology 25, 657–82.
Yokoyama, T. & Nakamura, E. 2002. Precise determination of ferrous iron in silicate rocks. Geochemica and Cosmochemica Acta 66, 1085–93.
Zanchetta, S., Berra, F., Zanchi, A., Bergomi, M., Caridroit, M., Nicora, M. & Heidarzadeh, G. 2013. The record of the Late Palaeozoic active margin of the Palaeotethys in NE Iran: constraints on the Cimmerian orogeny. Gondwana Research 24, 1237–66.
Zanchi, A., Malaspina, N., Zanchetta, S., Berra, F., Benciolini, L., Bergomi, M., Cavallo, A., Javadi, H. R. & Kouhpeyma, M. 2015. The Cimmerian accretionary wedge of Anarak, Central Iran. Journal of Asian Earth Sciences 102, 4572.
Zanchi, A., Zanchetta, S., Garzanti, E., Balini, M., Berra, F., Mattei, M. & Muttoni, G. 2009. The Cimmerian evolution of the Nakhlak-Anarak area, central Iran, and its bearing for the reconstruction of the history of the Eurasian margin. In South Caspian to Central Iran Basins (Brunet, M. F., Wilmsen, M. & Granath, J. W., eds), pp. 261–86. Geological Society of London, Special Publications no. 312.

Keywords

Contrasting subduction–exhumation paths in the blueschists of the Anarak Metamorphic Complex (Central Iran)

  • S. ZANCHETTA (a1), N. MALASPINA (a1), A. ZANCHI (a1), L. BENCIOLINI (a2), S. MARTIN (a3), H.R. JAVADI (a4) and M. KOUHPEYMA (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed