Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.401 Render date: 2021-03-02T13:01:50.337Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Single zircon U–Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent

Published online by Cambridge University Press:  15 January 2010

STANISŁAW MAZUR
Affiliation:
Institute of Geological Sciences, University of Wrocław, Pl. Borna 9, 50-204 Wrocław, Poland
ALFRED KRÖNER
Affiliation:
Institut für Geowissenschaften, Universität Mainz, 55099 Mainz, Germany
JACEK SZCZEPAŃSKI
Affiliation:
Institute of Geological Sciences, University of Wrocław, Pl. Borna 9, 50-204 Wrocław, Poland
KRZYSZTOF TURNIAK
Affiliation:
Institute of Geological Sciences, University of Wrocław, Pl. Borna 9, 50-204 Wrocław, Poland
PAVEL HANŽL
Affiliation:
Czech Geological Survey, Leitnerova 22, 658 69 Brno, Czech Republic
ROSTISTLAV MELICHAR
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
NICKOLAY V. RODIONOV
Affiliation:
Centre of Isotopic Research, VSEGEI, St Petersburg, Russia
ILYA PADERIN
Affiliation:
Centre of Isotopic Research, VSEGEI, St Petersburg, Russia
SERGEY A. SERGEEV
Affiliation:
Centre of Isotopic Research, VSEGEI, St Petersburg, Russia
Corresponding
E-mail address:

Abstract

Seven granitoid gneisses from the contact zone between the eastern margin of the Variscan belt and the Brunian microcontinent in SW Poland have been dated by ion-microprobe and 207Pb/206Pb single zircon evaporation methods. The zircons define two age groups for the gneiss protoliths: (1) late Neoproterozoic c. 576–560 Ma and (2) early Palaeozoic c. 488–503 Ma granites. The granitoid gneisses belonging to the basement of the Brunian microcontinent contain abundant Mesoproterozoic to latest Palaeoproterozoic inherited material in the range of 1200–1750 Ma. The gneisses of the Variscan crustal domain lack Mesoproterozoic inherited zircon cores. Trace element geochemistry of Proterozoic gneisses reveals features resembling either volcanic arc or post-collisional granites. The studied rocks are geochemically similar to other Proterozoic orthogneisses derived from the basement of the Brunian microcontinent. Gneisses with early Palaeozoic protolith ages are geochemically comparable to granitoid gneisses widespread in the adjacent Sudetic part of the Bohemian Massif and are considered characteristic of peri-Gondwanan crust. Our data prove the dissimilarity between the Brunia plate and the westerly terranes of the Variscan belt. The occurrence of granitic gneisses with late Neoproterozoic protolith ages and widespread Mesoproterozoic inheritance in our dated samples support an East Avalonian affinity for the Brunian microcontinent. In contrast, the abundance of gneisses derived from an early Palaeozoic granitic protolith and devoid of Mesoproterozoic zircon cores supports the Armorican affinity of the Variscan domain bordering on the Brunia plate from the west. Structural evidence shows that the eastern segment of the Variscan belt is juxtaposed against the Brunian microcontinent along a N–S-trending tectonic contact, possibly equivalent to the Rheic suture.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

Aleksandrowski, P., Kryza, R., Mazur, S., Pin, C. & Zalasiewicz, J. A. 2000. The Polish Sudetes: Caledonian or Variscan? Transactions of the Royal Society of Edinburgh 90, 126–46.Google Scholar
Aleksandrowski, P. & Mazur, S. 2002. Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. In Palaeozoic Amalgamation of Central Europe (eds Winchester, J., Pharaoh, T. & Verniers, J.), pp. 237–77. Geological Society of London, Special Publication no. 201.Google Scholar
Barbarin, B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46, 605–26.CrossRefGoogle Scholar
Barker, F. 1979. Trondhjemites: definition, environment and hypothesis of origin. In Trondhjemites, Darefs and Related Rocks (ed. Barker, F.), pp. 112. Amsterdam: Elsevier.Google Scholar
Bederke, E. 1929. Die varistische Tektonik der mittleren Sudeten. Fortschritte der Geologie und Paläeontologie 23, 429524.Google Scholar
Bederke, E. 1935. Verbreitung und Gliederung des Devons in den Ostsudeten. Zentralblatt für Mineralogie, Geologie und Paläontologie Abteilung B, 33–40.Google Scholar
Belka, Z., Ahrendt, H., Franke, W. & Wemmer, K. 2000. The Baltica–Gondwana suture in central Europe: evidence from K–Ar ages of detrital muscovites and biogeographical data. In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 87102. Geological Society of London, Special Publication no. 179.Google Scholar
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for U–Pb geochronology. Chemical Geology 200, 155–70.CrossRefGoogle Scholar
Bröcker, M., Klemd, R., Cosca, M., Brock, W., Larionov, A. N. & Rodionov, N. 2009. The timing of eclogite-facies metamorphism and migmatization in the Orlica–Śnieżnik complex, Bohemian Massif: constraints from a geochronological multimethod study. Journal of Metamorphic Geology 27, 385403.CrossRefGoogle Scholar
Cháb, J., Mixa, P., Vanecek, M. & Žáček, V. 1994. Geology of the NW part of the Hrubý Jesenik Mts. (the Bohemian massif, Central Europe). Věstník Českého geologického ústavu 69 (3), 1726.Google Scholar
Cymerman, Z. & Jerzmański, J. 1987. The metamorphic complex in the eastern part of the Fore-Sudetic block at Niedźwiedź, near to Ziębice. Kwartalnik Geologiczny 31, 239–62 (in Polish).Google Scholar
Don, J., Dumicz, M., Wojciechowska, I. & Żelaźniewicz, A. 1990. Lithology and tectonics of the Orlica–Śnieżnik Dome, Sudetes – recent state of knowledge. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 179, 159–88.Google Scholar
Dudek, A. 1980. The crystalline basement block of the Outer Carpathians in Moravia: Bruno-Vistulicum. Rozpravy České Akademie Věd 90, 185.Google Scholar
Finger, F., Hanžl, P., Pin, C., Von Quadt, A. & Steyrer, H. P. 2000. The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 103–12. Geological Society of London, Special Publication no. 179.Google Scholar
Fischer, G. 1936. Der Bau des Glatzer Schneegebirges. Jahrbuch der Preussischen Geologischen Landesanstalt 56, 712–32.Google Scholar
Friedl, G., Finger, F., McNaughton, N. J. & Fletcher, I. R. 2000. Deducing the ancestry of terranes: SHRIMP evidence for South America-derived Gondwana fragments in central Europe. Geology 28, 1035–8.2.0.CO;2>CrossRefGoogle Scholar
Fritz, H. & Neubauer, F. 1993. Kinematics of crustal stacking and dispersion in the south-eastern Bohemian Massif. Geologische Rundschau 82, 556–65.CrossRefGoogle Scholar
Hanžl, P. & Melichar, R. 1997. The Brno massif: a section through the active continental margin or a composed terrane? Krystalinikum 23, 3358.Google Scholar
Kalvoda, J., Melichar, R., Bábek, O. & Leichmann, J. 2002. Late Proterozoic-Paleozoic tectonostratigraphic development and paleogeography of Brunovistulian terrane and comparison with other terranes at the SE margin of Baltica–Laurussia. Journal of the Czech Geological Society 47 (3), 81102.Google Scholar
Keppie, J. D., Davis, D. W. & Krogh, T. E. 1998. U–Pb geochronological constraints on Precambrian stratified units in the Avalon Composite Terrane of Nova Scotia, Canada: tectonic implications. Canadian Journal of Earth Sciences 35, 222–36.CrossRefGoogle Scholar
Klimas, K. 2008. Geochronology and petrogenetic study of zircons from selected crystalline rocks of the eastern Fore-Sudetic block. ARGI. Wrocław, 194 pp.Google Scholar
Kober, B. 1987. Single-zircon evaporation combined with Pb+ emitter-bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry, and implications to zirconology. Contribution to Mineralogy and Petrology 96, 6371.CrossRefGoogle Scholar
Kröner, A., Byerly, G. R. & Lowe, D. R. 1991. Chronology of early Archaean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by single zircon evaporation. Earth and Planetary Science Letters 103, 4154.CrossRefGoogle Scholar
Kröner, A. & Hegner, E. 1998. Geochemistry, single zircon ages and Sm–Nd systematics of granitoid rocks from the Góry Sowie (Owl Mts, Polish West Sudetes): evidence for early Palaeozoic arc-related plutonism. Journal of the Geological Society, London 155, 711–24.CrossRefGoogle Scholar
Kröner, A., Jaeckel, P., Hegner, E. & Opletal, M. 2001. Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše and Orlice–Snéžník Complex). International Journal of Earth Sciences (Geologische Rundschau) 90, 304–24.CrossRefGoogle Scholar
Kröner, A., Štípská, P., Schulmann, K. & Jaeckel, P. 2000. Chronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 175–97. Geological Society of London, Special Publication no. 179.Google Scholar
Kröner, A., Wilde, S. A., O'Brien, P. J., Li, J. H., Passchier, C. W., Walte, N. P. & Liu, D. Y. 2005. Field relationships, geochemistry, zircon ages and evolution of a late Archaean to Palaeoproterozoic lower crustal section in the Hengshan Terrain of northern China. Acta Geologia Sinica 79, 605–29.Google Scholar
Lange, U., Bröcker, M., Armstrong, R., Żelaźniewicz, A., Trapp, E. & Mezger, K. 2005. The orthogneisses of the Orlica–Śnieźnik complex (West Sudetes, Poland): geochemical characteristics, the importance of pre-Variscan migmatization and constraints on the cooling history. Journal of the Geological Society, London 162, 973–84.CrossRefGoogle Scholar
Lange, U., Bröcker, M., Mezger, K. & Don, J. 2002. Geochemistry and Rb–Sr geochronology of a ductile shear zone in the Orlica–Śnieźnik dome (West Sudetes, Poland). International Journal of Earth Sciences 91, 1005–16.CrossRefGoogle Scholar
Ludwig, K. R. 1999. User's manual for Isoplot/Ex, Version 2.10. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 1a. Berkeley, CA.Google Scholar
Ludwig, K. R. 2000. SQUID 1.00, A User's Manual. Berkeley Geochronology Center Special Publication No. 2. Berkeley, CA.Google Scholar
Maniar, P. D. & Piccoli, P. M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–43.2.3.CO;2>CrossRefGoogle Scholar
Matte, Ph., Maluski, H., Rajlich, P. & Franke, W. 1990. Terrane boundaries in the Bohemian Massif: results of large-scale Variscan shearing. Tectonophysics 177, 151–70.CrossRefGoogle Scholar
Mazur, S. & Józefiak, D. 1999. Structural record of Variscan thrusting and subsequent extensional collapse in the mica schists from vicinities of Kamieniec Ząbkowicki, Sudetic foreland, SW Poland. Annales Societatis Geologorum Poloniae 69, 126.Google Scholar
Mazur, S., Puziewicz, J. & Józefiak, D. 1995. The Niemcza Zone – a regional-scale shear zone between two areas of contrasting tectono-metamorphic evolution. In Guidebook of LXVI Meeting of the Polish Geological Society, pp. 221–40. Wrocław: Polish Geological Society (in Polish, English summary).Google Scholar
Moczydłowska, M. 1997. Proterozoic and Cambrian successions in Upper Silesia: an Avalonian terrane in southern Poland. Geological Magazine 134, 679–89.CrossRefGoogle Scholar
Murphy, J. B., Pisarevsky, S. A., Nance, R. D. & Keppie, J. D. 2004. Neoproterozoic–Early Palaeozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. International Journal of Earth Sciences 93, 659–82.CrossRefGoogle Scholar
Nakamura, N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta 38, 757–75.CrossRefGoogle Scholar
Nance, R. D. & Murphy, J. B. 1996. Basement isotopic signatures and Neoproterozoic paleogeography of Avalonian–Cadomian and related terranes in the circum-North Atlantic. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic (eds Nance, R. D. & Thompson, M. D.), pp. 333–46. Geological Society of America, Special Paper no. 304.Google Scholar
Nance, R. D., Murphy, J. B., Strachan, R. A., Keppie, J. D., Gutierrez-Alonso, G., Fernandez-Suarez, J., Quesada, C., Linnemann, U., D'Lemos, R. & Pisarevsky, S. A. 2008. Neoproterozoic–early Palaeozoic tectonostratigraphy and palaeo-geography of the peri-Gondwanan terranes: Amazonian v. West African connections. In The Boundaries of the West African Craton (eds Nasser, E. & Liégeois, J. P.), pp. 345–83. Geological Society of London, Special Publication no. 297.Google Scholar
Nawrocki, J., Żylińska, A., Buła, Z., Grabowski, J., Krzywiec, P. & Poprawa, P. 2004. Early Cambrian location and affinities of the Brunovistulian terrane (Central Europe) in the light of palaeomagnetic data. Journal of the Geological Society, London 161, 513–22.CrossRefGoogle Scholar
Oberc, J. 1966. Geology of crystalline rocks of the Wzgórza Strzelińskie Hills, Lower Silesia. Studia Geologica Polonica 20, 9187 (in Polish, English summary).Google Scholar
Oberc, J. 1968. The boundary between the western and eastern Sudetic tectonic structure. Annales Societatis Geologorum Poloniae 38 (2/3), 203–17 (in Polish, English summary).Google Scholar
Oberc-Dziedzic, T., Klimas, K., Kryza, R. & Fanning, C. M. 2003. SHRIMP zircon geochronology of the Strzelin gneiss, SW Poland: evidence for a Neoproterozoic thermal event in the Fore-Sudetic Block, Central European Variscides. International Journal of Earth Sciences 92, 701–11.CrossRefGoogle Scholar
Oberc-Dziedzic, T., Kryza, R., Klimas, K., Fanning, M. C. & Madej, S. 2005. Gneiss protolith ages and tectonic boundaries in the NE part of the Bohemian Massif (Fore-Sudetic Block, SW Poland). Geological Quarterly 49 (4), 363–78.Google Scholar
Oberc-Dziedzic, T. & Madej, S. 2002. The Variscan overthrust of the Lower Palaeozoic gneiss unit on the Cadomian basement in the Strzelin and Lipowe Hills massifs, Fore-Sudetic Block, SW Poland; is this part of the East-West Sudetes boundary? Geologia Sudetica 34, 3958.Google Scholar
Oberc-Dziedzic, T., Pin, C. & Kryza, R. 2005. Early Palaeozoic crustal melting in an extensional setting: petrological and Sm–Nd evidence from the Izera granite-gneisses, Polish Sudetes. International Journal of Earth Sciences 94 (3), 354–68.CrossRefGoogle Scholar
Oliver, G. J. H., Corfu, F. & Krogh, T. E. 1993. U–Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. Journal of the Geological Society, London 150, 355–69.CrossRefGoogle Scholar
Parry, M., Štípská, P., Schulmann, K., Hrouda, F., Ježek, J. & Kröner, A. 1997. Tonalite sill emplacement at an oblique plate boundary: northeastern margin of the Bohemian Massif. Tectonophysics 280, 6181.CrossRefGoogle Scholar
Pearce, J. A. 1996. Sources and settings of granitic rocks. Episodes 19, 120–5.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Pharaoh, T. C. 1999. Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314, 1741.CrossRefGoogle Scholar
Pollock, J. C., Hibbard, J. P. & Sylvester, P. J. 2009. Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U–Pb detrital zircon constraints from Newfoundland. Journal of the Geological Society, London 166, 501–15.CrossRefGoogle Scholar
Priem, H. N. A., Kroonenberg, S. B., Beolrijk, N. A. I. M. & Hebeda, E. H. 1989. Rb–Sr and K–Ar evidence of a 1.6 Ga basement underlying the 1.2 Ga Garzón-Santa Marta granulite belt in the Colombian Andes. Precambrian Research 42, 315–24.CrossRefGoogle Scholar
Prigmore, J. K., Butler, A. J. & Woodcock, N. H. 1997. Rifting during separation of Eastern Avalonia from Gondwana: Evidence from subsidence analysis. Geology 25, 203–6.2.3.CO;2>CrossRefGoogle Scholar
Puziewicz, J. & Rudolf, N. 1998. Petrology and origin of the leucocratic two-mica gneisses from the Doboszowice metamorphic unit. Archiwum Mineralogiczne 51 (1–2), 181212 (in Polish, English summary).Google Scholar
Restrepo-Pace, P. A., Ruiz, J., Gehrels, G. E. & Cosca, M. 1997. Geochronology and Nd isotopic data of Grenville-age rocks in the Colombian Andes: new constraints for Late Proterozoic–Early Paleozoic paleocontinental reconstructions of the Americas. Earth and Planetary Science Letters 150, 427–41.CrossRefGoogle Scholar
Ruiz, J., Tosdal, R. M., Restrepo, P. A. & Murrillo-Muneton, G. 1999. Pb isotope evidence for Colombia-southern Mexico connections in the Proterozoic. In Laurentia-Gondwana connections before Pangea (eds Ramos, V. A. & Keppie, J. D.), pp. 183–98. Geological Society of America, Special Paper no. 336.CrossRefGoogle Scholar
Schulmann, K. & Gayer, R. 2000. A model for a continental accretionary wedge developed by oblique collision: the NE Bohemian Massif. Journal of the Geological Society, London 157, 401–16.CrossRefGoogle Scholar
Schulmann, K., Ledru, P., Autran, A., Melka, R., Lardeaux, J. M., Urban, M. & Lobkowicz, M. 1991. Evolution of nappes in the eastern margin of the Bohemian Massif: A kinematic interpretation. Geologische Rundschau 80, 7392.CrossRefGoogle Scholar
Skácel, J. 1989. Intersection of the Lugian boundary fault and the Nyznerov dislocation zone between Vapienna and Javornik in Silesia (Czech Republic). Acta Universitatis Palackianae, Olomoucensis 95, Geographica-Geologica 27, 3145 (in Czech, English summary).Google Scholar
Souček, J., Jelínek, E. & Bowes, D. R. 1992. Geochemistry of gneisses of the Eastern margin of the Bohemian massif. In Proceedings of the 1st International Conference on the Bohemian Massif (ed. Kukal, Z.), pp. 269–85. Prague.Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Štípská, P., Schulmann, K. & Kröner, A. 2004. Vertical extrusion and middle crustal spreading of ompharef granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic). Journal of Metamorphic Geology 22, 179–98.CrossRefGoogle Scholar
Štípská, P., Schulmann, K., Thompson, A. B., Ježek, J. & Kröner, A. 2001. Thermo-mechanical role of a Cambro-Ordovician paleorift during the Variscan collision: the NE margin of the Bohemian Massif. Tectonophysics 332, 239–53.CrossRefGoogle Scholar
Suess, F. E. 1912. Die moravischen Fenster und ihre Beziehung zum Grundgebirge des Hohes Gesenkes. Denkschrifte der österreichischen Akademie der Wissenschaften, Math.-nat. Kl. 78, 541631.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematic of oceanic of oceanic basalts: implications for mantle composition and processes. In Magmatism in oceanic basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Szczepański, J. & Oberc-Dziedzic, T. 1998. Geochemistry of amphibolites from the Strzelin crystalline massif, Fore-Sudetic Block, SW Poland. Neues Jahrbuch für Mineralogie, Abhandlungen 173, 2340.Google Scholar
Turniak, K., Mazur, S. & Wysoczanski, R. 2000. SHRIMP zircon geochronology and geochemistry of the Orlica–Śnieżnik gneisses (Variscan belt of Central Europe) and their tectonic implications. Geodinamica Acta 13, 293312.CrossRefGoogle Scholar
van Breemen, O., Aftalion, M., Bowes, D. R., Dudek, A., Misař, Z., Povondra, P. & Vrana, S. 1982. Geochronological studies of the Bohemian massif, Czechoslovakia, and their significance in the evolution of Central Europe. Transaction of the Royal Society of Edinburgh, Earth Sciences 73, 89108.CrossRefGoogle Scholar
Wetherill, G. W. 1956. Discordant uranium-lead ages. Transactions of American Geophysical Union 37, 320–6.CrossRefGoogle Scholar
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter 19, 123.CrossRefGoogle Scholar
Williams, I. S. 1998. U–Th–Pb Geochronology by Ion Microprobe. In Applications of microanalytical techniques to understanding mineralizing processes (eds McKibben, M. A., Shanks III, W. C. & Ridley, W. I.), pp. 135. Reviews in Economic Geology 7.Google Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Winchester, J. A. & PACE TMR Network Team. 2002. Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360, 521.CrossRefGoogle Scholar
Zapletal, K. 1932. Location of the Moravo-Silesian region in Variscides and Alpides. In Sborník Přírodovědecké spolecnosti v Moravské Ostrave 1930–1931, pp. 257–92. Moravskoslezská knihtiskárna v Moravské Ostrave (in Czech).Google Scholar
Żelaźniewicz, A., Buła, Z., Fanning, M., Seghedi, A. & Żaba, J. 2009. More evidence on Neoproterozoic terranes in Southern Poland and southeastern Romania. Geological Quarterly 53, 93124.Google Scholar
Żelaźniewicz, A., Nowak, I., Larionov, A. N. & Presnyakov, S. 2006. Syntectonic lower Ordovician migmatite and post-tectonic Upper Viséan syenite in the western limb of the Orlica–Śnieżnik Dome, West Sudetes: U–Pb SHRIMP data from zircons. Geologia Sudetica 38, 6380.Google Scholar

Mazur supplementary material

Tables.pdf

PDF 161 KB

Mazur supplementary material

Figures.pdf

PDF 1 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 10
Total number of PDF views: 41 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Single zircon U–Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Single zircon U–Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Single zircon U–Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *