Skip to main content Accessibility help
×
Home

Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China: further evidence regarding their affinity

Published online by Cambridge University Press:  10 February 2010


JIAN-BO ZHOU
Affiliation:
College of Earth Sciences, Jilin University, Changchun 130061, China
SIMON A. WILDE
Affiliation:
College of Earth Sciences, Jilin University, Changchun 130061, China Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
GUO-CHUN ZHAO
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
XING-ZHOU ZHANG
Affiliation:
College of Earth Sciences, Jilin University, Changchun 130061, China
CHANG-QING ZHENG
Affiliation:
College of Earth Sciences, Jilin University, Changchun 130061, China
HU WANG
Affiliation:
College of Earth Sciences, Jilin University, Changchun 130061, China
WEI-SHUN ZENG
Affiliation:
College of Earth Sciences, Jilin University, Changchun 130061, China
Corresponding
E-mail address:

Abstract

The Khanka Massif is a crustal block located along the eastern margin of the Central Asian Orogenic Belt (CAOB) and bordered to the east by Late Jurassic–Early Cretaceous circum-Pacific accretionary complexes of the Eastern Asian continental margin. It consists of graphite-, sillimanite- and cordierite-bearing gneisses, carbonates and felsic paragneisses, in association with various orthogneisses. Metamorphic zircons from a sillimanite gneiss from the Hutou complex yield a weighted mean 206Pb/238U age of 490 ± 4 Ma, whereas detrital zircons from the same sample give ages from 934–610 Ma. Magmatic zircon cores in two garnet-bearing granite gneiss samples, also collected from the Hutou complex, yield weighted mean 206Pb/238U ages of 522 ± 5 Ma and 515 ± 8 Ma, whereas their metamorphic rims record 206Pb/238U ages of 510–500 Ma. These data indicate that the Hutou complex in the Khanka Massif records early Palaeozoic magmatic and metamorphic events, identical in age to those in the Mashan Complex of the Jiamusi Massif to the west. The older zircon populations in the sillimanite gneiss indicate derivation from Neoproterozoic sources, as do similar rocks in the Jiamusi Massif. These data confirm that the Khanka Massif has a close affinity with other major components of the CAOB to the west of the Dun-Mi Fault. Based on these results and previously published data, the Khanka Massif is therefore confirmed as having formed a single crustal entity with the Jiamusi (and possibly the Bureya) massif since Neoproterozoic time.


Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

Cao, X., Dang, Z. X., Zhang, X. Z., Jiang, J. S. & Wang, H. D. 1992. Jiamusi Composite Terranes. Jilin Publishing House of Science and Technology, Changchun 19, 224 pp. (in Chinese, with English and Russian abstracts).Google Scholar
Cheng, R. Y., Wu, F. Y., Ge, W. C., Sun, D. Y., Liu, X. M. & Yang, J. H. 2006. Emplacement age of the Raohe Complex in eastern Heilongjiang Province and the tectonic evolution of the eastern part of Northeastern China. Acta Petrologica Sinica 22, 353–76.Google Scholar
Grimmer, C., Ratschbacher, L., McWilliams, M., Franz, L., Gaitzsch, I., Tichomirowa, M., Hacker, B. R. & Zhang, Y. 2003. When did the ultra high pressure rocks reach the surface? A 207Pb/206Pb zircon, 40Ar/39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chemical Geology 197, 87110.CrossRefGoogle Scholar
Hacker, B. R., McClelland, W. C. & Liou, J. G. 2006. Ultrahigh-pressure metamorphism: Deep continental subduction. Geological Society of America, Special Paper no. 403, 206 pp.Google Scholar
HBGMR (Heilongjiang Bureau of Geology and Mineral Resources). 1993. Regional Geology of Heilongjiang Province. Geological Publishing House, 734 pp. (in Chinese with English abstract).Google Scholar
Ishiwatari, A. & Tsujimori, T. 2001. Late Paleozoic High-pressure Metamorphic Belts in Japan and Sikhote-Alin: Possible Oceanic Extension of the Chinese Dabie-Su-Lu Suture Detouring Korea. Gondwana Research 4, 636–8.CrossRefGoogle Scholar
Ishiwatari, A. & Tsujimori, T. 2003. Paleozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of East Asia: A synthesis. The Island Arc 12, 190206.CrossRefGoogle Scholar
Jahn, B. M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In Aspects of the Tectonic Evolution of China (eds Malpas, J., Fletcher, C. J. N., Ali, J. R. & Aitchison, J. C.), pp. 73100. Geological Society of London, Special Publication no. 226.Google Scholar
Jahn, B. M., Wu, F. Y. & Chen, B. 2000. Massive granitoid generation in central Asia: Nd isotopic evidence and implication for continental growth in the Phanerozoic. Episodes 23, 8292.Google Scholar
Jia, D. C., Hu, R. Z., Lu, Y. & Qiu, X. L. 2004. Collision belt between the Khanka block and the North China block in the Yanbian region, northeast China. Journal of Asian Earth Sciences 23, 211–19.Google Scholar
Jiang, J. 1992. Peak regional metamorphism of the khondalite series of Mashan Group and its evolution. Acta Petrologica et Mineralogica 11, 97108 (in Chinese with English abstract).Google Scholar
Khain, E. V., Bibikova, E. V., Salnikova, E. B., Kröner, A., Gibsher, A. S., Didenko, A. N., Degtyarev, K. E. & Fedotova, A. A. 2003. The Palaeo-Asian Ocean in the Neoproterozoic and early Palaeozoic: new geochronologic data and palaeotectonic reconstructions. Precambrian Research 122, 329–58.CrossRefGoogle Scholar
Kojima, S. 1989. Mesozoic terrane accretion in northeast China, Sikhote-Alin and Japan regions. Palaeogeography, Palaeoclimatology, Palaeoecology 69, 213–32.CrossRefGoogle Scholar
Lennon, R. G., Wilde, S. A. & Yang, T. 1997. The Mashan Group: a 500 Ma granulite facies terrain within the Jiamusi Massif, Heilongjiang Province, North-eastern China. In Proterozoic Geology of Madagascar (eds Cox, R. & Ashwal, L. D.), pp. 45–6. Proceedings of UNESCO-IUGS-IGCP 348/368 International Field Workshop, Antananarivo, Madagascar, 1997. Gondwana Research Group, Publication no. 5.Google Scholar
Li, J. Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences 26, 207–24.CrossRefGoogle Scholar
Li, J. Y., Niu, B. G., Song, B., Xu, W. X., Zhang, Y. H. & Zhao, Z. R. 1999. Crustal Formation and Evolution of Northern Changbai Mountains, Northeast China. Geological Publishing House, Beijing, pp. 32–50 (in Chinese with English abstract).Google Scholar
Li, Z. X., Li, X. H., Kinny, P. D., Wang, J., Zhang, S. & Zhou, H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research 122, 85109.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Zhou, H. & Kinny, P. D. 2002. Grenvillian continental collision in south China: new SHRIMP U–Pb zircon results and implications for the configuration of Rodinia. Geology 30, 163–6.2.0.CO;2>CrossRefGoogle Scholar
Ludwig, K. R. 2001. Users Manual for Isoplot/Ex (ver. 2.49): A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 1a, 55 pp.Google Scholar
Natal'in, B. A. 1991. Mesozoic accretion and collision tectonics of southern USSR Far East. Pacific Geology 10, 323.Google Scholar
Natal'in, B. A. 1993. History and modes of Mesozoic accretion in southeastern Russia. The Island Arc 2, 1534.CrossRefGoogle Scholar
Natal'in, B. A. & Borukayev, C. B. 1991. Mesozoic sutures in the southern Far East of USSR. Geotectonics 25, 6474.Google Scholar
Nelson, D. R. 1997. Compilation of SHRIMP U–Pb zircon geochronology data, 1996, Geological Survey of Western Australia. 1997/2, 189 pp.Google Scholar
Oh, C. W. 2006. A new concept on tectonic correlation between Korea, China and Japan: Histories from the late Proterozoic to Cretaceous. Gondwana Research 9, 4761.CrossRefGoogle Scholar
Oh, C. W., Kim, S. W. & Williams, I. S. 2006. Spinel granulite in Odesan area, South Korea: Tectonic implications for the collision between the North and South China blocks. Lithos 92, 557–75.CrossRefGoogle Scholar
Oh, C. W & Kusky, T. 2007. The Late Permian to Triassic Hongseong-Odesan Collision Belt in South Korea, and Its Tectonic Correlation with China and Japan. International Geology Review 49, 636–57.CrossRefGoogle Scholar
Ratschbacher, L., Franz, L., Enkelmann, E., Jonckheere, R., Porschke, A., Hacker, B. R., Dong, S. & Zhang, Y. 2006. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic–Tertiary exhumation of (ultra) high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains. In Ultrahigh-pressure metamorphism: Deep continental subduction (eds Hacker, B. R., McClelland, W. C. & Liou, J. G.), pp. 4577. The Geological Society of America, Special Paper no. 403.CrossRefGoogle Scholar
Ren, J. S., Wang, Z. X., Chen, B. W., Jiang, C. F., Niu, B. G., Li, J. Y., Xie, G. L., He, Z. G. & Liu, Z. G. 1999. The tectonics of China from a global view. A guide to the tectonic map of China and adjacent regions. Beijing: Geological Publishing House, pp. 432.Google Scholar
Salnikova, E. B., Kozakov, I. K., Kotov, A. B., Kröner, A., Todt, W., Bibikova, E. V., Nutman, A., Yakovleva, S. Z. & Kovach, V. P. 2001. Age of Palaeozoic granites and metamorphism in the Tuvino- Mongolian Massif of the Central Asian Mobile Belt: loss of a Precambrian microcontinent. Precambrian Research 110, 143–64.CrossRefGoogle Scholar
Salnikova, E. B., Sergeev, S. A., Kotov, A. B., Yakovleva, S. Z., Reznitskii, L. Z. & Vasil'ev, E. P. 1998. U–Pb zircon dating of granulite metamorphism in the Slyudyanskiy complex, Eastern Siberia. Gondwana Research 1, 195205.CrossRefGoogle Scholar
Santosh, M., Sajeev, K. & Li, J. H. 2006. Extreme crustal metamorphism during Columbia supercontinent assembly: evidence from North China craton, Gondwana Research 10, 256–66.CrossRefGoogle Scholar
Şengör, A. M. C. & Natal'in, B. A. 1996. Paleotectonics of Asia: Fragments of a synthesis. In The Tectonic Evolution of Asia (eds Yin, A. & Harrison, T. M.), pp. 486640. Cambridge University Press.Google Scholar
Şengör, A. M. C., Natal'in, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364, 299307.CrossRefGoogle Scholar
Shao, J. A. & Tang, K. D. 1995. Terranes in Northeast China and Evolution of Northeast Asia Continental Margin. Beijing: Seismology Publishing House, 185 pp. (in Chinese).Google Scholar
Shao, J. A., Tang, K. D. & Zhan, L. P. 1995. Reconstruction of an ancient continental margin and its implication: new progress on the study of geology of Yanbian region, northeast China. Science in China (Series B) 25, 548–55.Google Scholar
Shi, G. R. 2006. Marine Permian in East and NE Asia: an overview of biostratigraphy, palaeobiogeography and palaeogeographical implications. Journal of Asian Earth Sciences 26, 175206.CrossRefGoogle Scholar
Shi, G. R. & Zhan, L. P. 1996. A mixed mid-Permian marine fauna from the Yanji area, northeastern China: a paleobiogeographical reinterpretation, The Island Arc 5, 385–95.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1997. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Tang, K. D. 1990. Tectonic development of Paleozoic foldbelts at the northern margin of the Sino–Korean craton. Tectonics 9, 249–60.CrossRefGoogle Scholar
Tang, K. D., Wang, Y., He, G. Q. & Shao, J. A. 1995. Continental-margin structure of Northeast China and its adjacent areas. Acta Geologica Sinica 69, 1630.Google Scholar
Wan, Y. S., Song, B., Liu, D. Y., Wilde, S. A., Wu, J. S., Shi, Y. R., Yin, X. Y. & Zhou, H. Y. 2006. SHRIMP U–Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research 149, 249–71.CrossRefGoogle Scholar
Wang, L. W., Wang, Y., Yang, J., Wu, G. Q., Li, G. Y. & Sheng, L. 2007. Pre-Mesozoic basement provenance tracing of the Songliao Basin by means of detrital zircon SHRIMP chronology. Earth Science Frontiers 14, 151–8.Google Scholar
Wilde, S. A., Dorsett-Bain, H. L. & Lennon, R. G. 1999. Geological setting and controls on the development of graphite, sillimanite and phosphate mineralisation within the Jiamusi Massif: an exotic fragment of Gondwanaland located in North-Eastern China? Gondwana Research 2, 2146.CrossRefGoogle Scholar
Wilde, S. A., Dorsett-Bain, H. L. & Liu, J. L. 1997. The identification of a Late Pan-African granulite facies event in Northeastern China: SHRIMP U–Pb zircon dating of the Mashan Group at Liu Mao, Heilongjiang Province, China, pp. 5974. Proceedings of the 30th IGC: 17 Precambrian Geology and Metamorphic Petrology. Amsterdam: VSP International Science Publishers.Google Scholar
Wilde, S. A., Wu, F. Y. & Zhang, X. Z. 2003. Late Pan-African magmatism in Northeastern China: SHRIMP U–Pb zircon evidence for igneous ages from the Mashan Complex. Precambrian Research 122, 311–27.CrossRefGoogle Scholar
Wilde, S. A., Wu, F. Y. & Zhao, G. C. 2010. The Khanka Block, NE China, and its significance to the evolution of the Central Asian Orogenic Belt and continental accretion. In The Evolved Continents: Understanding the Processes of Continental Growth (eds Kusky, T. M., Zhai, M. G. & Xiao, W. J.). Geological Society of London, Special Publication, in press.Google Scholar
Wilde, S. A., Zhang, X. Z. & Wu, F. Y. 2000. Extension of a newly-identified 500 Ma metamorphic terrain in Northeast China: Further U–Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics 328, 115–30.CrossRefGoogle Scholar
Wilde, S. A. & Zhao, G. C. 2005. Archean to Paleoproterozoic evolution of the North China Craton. Journal of Asian Earth Sciences 24, 519–22.CrossRefGoogle Scholar
Williams, I. S. 1998. U–Th–Pb geochronology by ion microprobe. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds McKibben, M. A., Shanks, W. C. III & Ridley, W. I.), pp. 1–35. Reviews in Economic Geology 7.Google Scholar
Wu, F. Y., Jahn, B. M., Wilde, S. A., Lo, C. H., Yui, T. F., Lin, Q., Ge, W. C. & Sun, D. Y. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos 66, 241–73.CrossRefGoogle Scholar
Wu, F. Y., Jahn, B. M., Wilde, S. A. & Sun, D. Y. 2000. Phanerozoic continental crustal growth: Sr–Nd isotopic evidence from the granites in northeastern China. Tectonophysics 328, 87113.CrossRefGoogle Scholar
Wu, F. Y., Sun, D. Y., Li, H. M. & Wang, X. L. 2001. The nature of basement beneath the Songliao Basin in NE China: Geochemical and isotopic constraints. Physics and Chemistry of the Earth (Part A) 26, 793803.CrossRefGoogle Scholar
Wu, F. Y., Yang, J. H., Lo, C. H., Wilde, S. A., Sun, D. Y. & Jahn, B. M. 2007. Jiamusi Massif in China: a Jurassic accretionary terrane in the western Pacific. The Island Arc 16, 156–72.CrossRefGoogle Scholar
Wu, Y. B., Chen, D. G., Xia, Q. K., Deloule, E. & Cheng, H. 2002. SIMS U–Pb dating of zircons in granulite of Huangtuling from Northern Dabieshan, Acta Petrologica Sinica 18, 378–82.Google Scholar
Zhai, M. G., Guo, J. H. & Liu, W. J. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review. Journal of Asian Earth Sciences 24, 547–61.CrossRefGoogle Scholar
Zhang, K. J. 1997. North and South China collision along the eastern and southern North China margins. Tectonophysics 270, 145–56.CrossRefGoogle Scholar
Zhang, K. J. 2004. Granulite xenoliths from Cenozoic basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks: comment. Lithos 73, 127–34.CrossRefGoogle Scholar
Zhang, K. J., Cai, J. X. & Zhu, J. X. 2006. North China and South China collision: Insights from analogue modeling. Journal of Geodynamics 42, 3851.CrossRefGoogle Scholar
Zhao, C., Peng, Y. & Dang, Z. 1995. The formation and evolution of crust in Eastern Jilin and Heilongjiang Provinces. Geotectonic Map of Eastern Jilin and Heilongjiang Provinces. 1:1,500,000 scale map and explanatory notes. Shenyang Institute of Geology and Mineral Resources and Heilongjiang Institute of Geology and Mineral Resources.Google Scholar
Zhao, G. C., Cawood, P. A., Wilde, S. A. & Sun, M. 2002. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Science Reviews 59, 125–62.CrossRefGoogle Scholar
Zhao, G. C., Cawood, P. A., Wilde, S. A., Sun, M. & Lu, L. Z. 2000. Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution. Precambrian Research 103, 5588.CrossRefGoogle Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136, 177202.CrossRefGoogle Scholar
Zheng, Y. F., Fu, B., Gong, B. & Li, L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Science Reviews 62, 105–61.CrossRefGoogle Scholar
Zheng, Y. F., Zhou, J. B., Wu, Y. B. & Xie, Z. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: a passive-margin accretionary wedge deformed during continent subduction. International Geology Review 47, 851–71.CrossRefGoogle Scholar
Zhou, J. B., Wilde, S. A., Zhang, X. Z., Zhao, G. C., Zheng, C. Q., Wang, Y. J. & Zhang, X. H. 2009. The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics 478, 230–46.CrossRefGoogle Scholar
Zhou, J. B., Wilde, S. A., Zhao, G. C., Zheng, C. Q., Jin, W., Zhang, X. Z. & Cheng, H. 2008 a. Detrital zircon U–Pb dating of low-grade metamorphic rocks in the Sulu UHP belt: evidence for overthrusting of the North China Craton onto the South China Craton during continental subduction. Journal of the Geological Society, London 165, 423–33.CrossRefGoogle Scholar
Zhou, J. B., Wilde, S. A., Zhao, G. C., Zheng, C. Q., Jin, W., Zhang, X. Z. & Cheng, H. 2008 b. SHRIMP U–Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China Craton, and their tectonic implications. Precambrian Research 160, 323–40.CrossRefGoogle Scholar
Zhou, J. B., Wilde, S. A., Zhao, G. C., Zheng, C. Q., Jin, W., Zhang, X. Z. & Cheng, H. 2008 c. SHRIMP U–Pb zircon dating of the Wulian Complex: defining the boundary between the North and South China Cratons in the Sulu Orogenic Belt, China. Precambrian Research 162, 559–76.CrossRefGoogle Scholar
Zhou, X. W., Zhao, G. C., Wei, C. J., Geng, Y. S. & Sun, M. 2008 d. EPMA, U–Th–Pb monazite and SHRIMP U–Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei Massif of the North China Craton. American Journal of Science 308, 328–50.CrossRefGoogle Scholar
Zyabrev, S. & Matsuoka, A. 1999. Late Jurassic (Tithonian) radiolarians from a clastic unit of the Khabarovsk complex (Russian Far East): significance for subduction accretion timing and terrane correlation. The Island Arc 8, 30–7.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 5
Total number of PDF views: 77 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th November 2020. This data will be updated every 24 hours.

Hostname: page-component-57c975d4c7-k9cgn Total loading time: 0.774 Render date: 2020-11-26T04:53:41.035Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Nov 26 2020 04:09:14 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": false, "relatedCommentaries": false, "subject": true, "clr": false, "languageSwitch": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China: further evidence regarding their affinity
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China: further evidence regarding their affinity
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China: further evidence regarding their affinity
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *