Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-lzpzj Total loading time: 0.796 Render date: 2021-02-26T18:36:41.014Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Longevity of the Permian Emeishan mantle plume (SW China): 1 Ma, 8 Ma or 18 Ma?

Published online by Cambridge University Press:  07 March 2008

J. GREGORY SHELLNUTT
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
MEI-FU ZHOU
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
DAN-PING YAN
Affiliation:
State Key Laboratory of Geo-Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
YANBIN WANG
Affiliation:
Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Science, Beijing, China
Corresponding

Abstract

After the formation of the ~ 260 Ma Emeishan large igneous province, there were two volumetrically minor magmatic pulses at ~ 252 Ma and ~ 242 Ma, respectively. Alkaline mafic dykes intruding both 260 Ma and 252 Ma felsic plutons in the Panxi region, southwestern China, have compositions similar to the Emeishan flood basalts. One dyke is dated using the SHRIMP zircon U–Pb technique at 242 ± 2 Ma, ~ 18 Ma younger than the start of Emeishan magmatism. The dykes have enriched light rare earth element patterns (La/YbN = 4.4–18.8) and trace element patterns similar to the Emeishan flood basalts and average ocean-island basalts. Some trace element ratios of the dykes (Zr/Nb = 3.8–8.2, La/Nb = 0.4–1.7, Ba/La = 7.5–25.6) are somewhat similar to EM1 source material, however, there are differences. Their εNd values (εNd = +2.6 and +2.7) and ISr (ISr = 0.704542 and 0.704554) ratios are indicative of a mantle source. Thus Emeishan magmatism may have lasted for almost 20 Ma after the initial eruption. However, geological evidence precludes the possibility that the post-260 Ma magmatic events were directly related to Emeishan magmatism, which began at and ended shortly after 260 Ma. The 252 Ma plutons and 242 Ma dykes represent volumetrically minor melting of the fossil Emeishan plume-head beneath the Yangtze crust. The 252 Ma magmatic event was likely caused by post-flood basalt extension of the Yangtze crust, whereas the 242 Ma event was caused by decompressional melting associated with the collision between the South China and North China blocks during the Middle Triassic.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

Abbott, D. H. & Isley, A. E. 2002. The intensity, occurrence, and duration of superplume events and eras over geological time. Journal of Geodynamics 34, 265307.CrossRefGoogle Scholar
Ali, J. R., Lo, C.-H., Thompson, G. M. & Song, X. Y. 2004. Emeishan basalt Ar–Ar overprint ages define several tectonic events that affected the western Yangtze platform in the Mesozoic Cenozoic. Journal of Asian Earth Science 23, 163–78.CrossRefGoogle Scholar
Ali, J. R., Thompson, G. M., Zhou, M.-F. & Song, X. Y. 2005. Emeishan large igneous province, SW China. Lithos 79, 475–89.CrossRefGoogle Scholar
Begemann, F., Ludwig, K. R., Lugmair, G. W., Min, K., Nyquist, L. E., Patchett, P. J., Renne, P. R., Shih, C.-Y., Villa, I. M. & Walker, R. J. 2001. Call for an improved set of decay constants for geochronological use. Geochimica et Cosmochimica Acta 65, 111–21.CrossRefGoogle Scholar
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003 a. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.CrossRefGoogle Scholar
Black, L. P., Kamo, S. L., Williams, I. S., Mundil, R., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003 b. The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chemical Geology 200, 171–88.CrossRefGoogle Scholar
Boven, A., Pasteels, P., Punzalan, L. E., Liu, J., Luo, X., Zhang, W., Guo, Z. & Hertogen, J. 2002. 40Ar/39Ar geochronological constraints on the age and evolution of the Permo-Triassic Emeishan volcanic province, southwest China. Journal of Asian Earth Sciences 20, 157–75.CrossRefGoogle Scholar
Bowring, S. A., Erwin, D. H., Jin, Y. G., Martin, M. W., Davidek, K. & Wang, W. 1998. U/Pb Zircon geochronology and tempo of the end-Permian mass extinction. Science 280, 1039–45.CrossRefGoogle ScholarPubMed
Bruguier, O., Lancelot, J. R. & Malavieille, J. 1997. U–Pb dating on single detrital zircon grains from the Triassic Songpan–Ganze flysch Central China: provenance and tectonic correlations. Earth and Planetary Science Letters 152, 217–31.CrossRefGoogle Scholar
Campbell, I. H. & Griffiths, R. W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters 99, 7993.CrossRefGoogle Scholar
Carter, A., Roques, D., Bristow, C. & Kinny, P. 2001. Understanding Mesozoic accretion in southeast Asia: significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology 29, 211–14.2.0.CO;2>CrossRefGoogle Scholar
Chen, F., Hegner, E. & Todt, W. 2000. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany – evidence for a Cambrian magmatic arc. International Journal of Earth Sciences 88, 791802.CrossRefGoogle Scholar
Chen, F., Siebel, W., Satir, M., Terzioglu, N. & Saka, K. 2002. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. International Journal of Earth Sciences 91, 469–81.CrossRefGoogle Scholar
Chung, S. L. & Jahn, B.-M. 1995. Plume–lithosphere interaction in generation of the Emeishan flood basalts at the Permian–Triassic boundary. Geology 23, 889–92.2.3.CO;2>CrossRefGoogle Scholar
Chung, S. L., Jahn, B.-M., Genyao, W., Lo, C. H. & Bolin, C. 1998. The Emeishan flood basalt in SW China: a mantle plume initiation model and its connection with continental breakup and mass extinction at the Permian–Triassic boundary. In Mantle Dynamics and Plate Interactions in East Asia (eds Flower, M. F. J., Chung, S.-L., Lo, C. H. & Lee, T. Y.), pp. 4758. American Geophysical Union, Geodynamic Series Volume 27.CrossRefGoogle Scholar
Claoué-Long, J. C., Compston, W., Roberts, J. & Fanning, M. 1995. Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In Geochronology Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubrey, M. P. & Hardenbol, J.), pp. 321. SEPM Special Publication no. 54.CrossRefGoogle Scholar
Coffin, M. F. & Eldholm, O. 1994. Large igneous provinces: crustal structure, dimensions and external consequences. Reviews of Geophysics 32, 136.CrossRefGoogle Scholar
Compston, W., Williams, I. S. & Meyer, C. 1984. U–Pb geochronology of zircons from Lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research 89, 525–34.CrossRefGoogle Scholar
Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P. & Besse, J. 1999. On causal links between flood basalts and continental break-up. Earth and Planetary Science Letters 166, 177–95.CrossRefGoogle Scholar
Ernst, R. E., Buchan, K. L. & Campbell, I. H. 2005. Frontiers in large igneous province research. Lithos 79, 271–97.CrossRefGoogle Scholar
Fahrig, W. F. 1987. The tectonic settings of continental mafic dyke swarms: failed arm and early passive margin. In Mafic Dyke Swarms (eds Halls, H. C. & Fahrig, W. F.), pp. 331–48. Geological Association of Canada, Special Paper no. 34.Google Scholar
Fan, W., Wang, V., Peng, T., Miao, L. & Guo, F. 2004. Ar–Ar and U–Pb geochronology of late Paleozoic basalts in western Guangxi and its constraints on the eruption age of Emeishan basalt magmatism. Chinese Science Bulletin 49, 2318–27.CrossRefGoogle Scholar
Gill, R. (ed.) 1997. Modern Analytical Geochemistry: an introduction to quantitative chemical analysis for earth, environment and materials scientists. Singapore: Addison Wesley Longman, 329 pp.Google Scholar
Gradstein, F. M., Ogg, J. G. & Smith, A. G. (eds) 2005. A geologic time scale 2004. Cambridge: Cambridge University Press, 589 pp.CrossRefGoogle Scholar
Guo, F., Fan, W., Wang, Y. & Li, C. 2004. When did the Emeishan mantle plume activity start? Geochronological and geochemical evidence from ultramafic–mafic dikes in southwestern China. International Geology Review 46, 226–34.CrossRefGoogle Scholar
Halls, H. C. 1982. The importance and potential of mafic dyke swarms in studies of geodynamic processes. Geoscience Canada 9, 145–54.Google Scholar
He, B., Xu, Y.-G., Chung, S.-L., Xiao, L. & Wang, Y. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters 213, 391405.CrossRefGoogle Scholar
He, B., Xu, Y.-G., Huang, X.-L., Luo, Z.-Y., Shi, Y.-R., Yang, O.-J. & Yu, S.-Y. 2007. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U–Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters 255, 306–23.CrossRefGoogle Scholar
Hooper, P. R. 1997. The Columbia River flood basalt province: current status. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F..), pp. 127. American Geophysical Union, Geophysical Monograph Series no. 100.Google Scholar
Huang, K. & Opdyke, N. D. 1998. Magnetostratigraphic investigations of an Emeishan basalt section in western Guizhou Province, China. Earth and Planetary Science Letters 163, 114.CrossRefGoogle Scholar
Kamo, S. L., Crowley, J. & Bowring, S. A. 2006. The Permian–Triassic boundary event and eruption of the Siberian flood basalts: An inter-laboratory U–Pb dating study. Geochimica et Cosmochimica Acta 70, A303.CrossRefGoogle Scholar
Lan, C.-Y., Chung, S.-L., Shen, J.-S., Lo, C.-H., Wang, P.-L., Hoa, T. T., Thanh, H. H. & Mertzman, S. A. 2000. Geochemical and Sr–Nd isotopic characteristics of granitic rocks from northern Vietnam. Journal of Asian Earth Sciences 18, 267–80.CrossRefGoogle Scholar
Lepvrier, C., Maluski, H., Tich, V. V., Leyreloup, A., Thi, P. T. & Vuong, N. V. 2004. The early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics 393, 87118.CrossRefGoogle Scholar
Li, S. G., Xiao, Y. L., Liou, D. L., Chen, Y. Z., Ge, N. J., Zhang, Z. Q., Sun, S. S., Cong, B. L., Zhang, R. Y., Hart, S. R. & Wang, S. S. 1993. Collision of the north China and Yangtse blocks and formation of coesite-bearing eclogites – timing and processes. Chemical Geology 109, 89111.CrossRefGoogle Scholar
Li, Z. X., Zhang, L. & Powell, C. M. 1995. South China in Rodinia: part of the missing link between Australia–East Antarctica and Laurentia. Geology 23, 407–10.2.3.CO;2>CrossRefGoogle Scholar
Liu, D., Jian, P., Kröner, A. & Xu, S. 2006. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie–Sulu UHP complex, China. Earth and Planetary Science Letters 250, 650–66.CrossRefGoogle Scholar
Lo, C. H., Chung, S.-L., Lee, T.-Y. & Wu, G. 2002. Age of the Emeishan flood magmatism and relations to Permian–Triassic boundary events. Earth and Planetary Science Letters 198, 449–58.CrossRefGoogle Scholar
Ludwig, K. R. 2001. Isoplot/Ex, rev. 2.49: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication no. 1a, 58 pp.Google Scholar
Luo, Z.-Y., Xu, Y.-G., He, B., Huang, X.-L. & Shi, Y. R. 2006. A-type granite and syenite intrusions in Emeishan large igneous provinces: product of the Emeishan plume? International Conference on Continental Volcanism IAVCEI2006 Abstracts & Program, p. 63.Google Scholar
Meng, Q.-R. & Zhang, G.-W. 1999. Timing of collision of the north and south China blocks: controversy and reconciliation. Geology 27, 123–6.2.3.CO;2>CrossRefGoogle Scholar
Metcalfe, I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of east Asian crustal fragments: the Korean peninsula in context. Gondwana Research 9, 2446.CrossRefGoogle Scholar
Morgan, W. J. 1972. Deep mantle convection plumes and plate motions. American Association of Petroleum Geologists Bulletin 56, 203–13.Google Scholar
Nam, T. N. 1998. Thermotectonic events from Early Proterozoic to Miocene in the Indochina craton: implication of K–Ar ages in Vietnam. Journal of Asian Earth Sciences 16, 475–84.Google Scholar
Nam, T. N., Sano, Y., Terada, K., Toriumi, M., Quynh, P. V. & Dung, L. T. 2001. First SHRIMP U–Pb zircon dating of granulites from the Kontum massif (Vietnam) and tectonothermal implications. Journal of Asian Earth Sciences 19, 7784.CrossRefGoogle Scholar
Pearce, J. A. & Cann, J. R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290300.CrossRefGoogle Scholar
Pollard, D. D. 1987. Elementary fracture mechanics applied to the structural interpretation of dykes. In Mafic Dyke Swarms (eds Halls, H. C. & Fahrig, W. F..), pp. 524. Geological Association of Canada, Special Paper no. 34.Google Scholar
Potts, P. J., Thompson, M., Kane, J. S. & Petrov, L. L. 2000. GEOPT7. An international proficiency test for analytical geochemistry laboratories. Report on Round 7. Geostandards Newsletter, 35 pp.Google Scholar
Potts, P. J., Thompson, M., Webb, P. C. & Watson, J. S. 2001. GEOPT9. An international proficiency test for analytical geochemistry laboratories. Report on Round 9. Geostandards Newsletter, 36 pp.Google Scholar
Qi, L., Jing, H. & Gregoire, D. C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51, 507–13.Google Scholar
Raczek, I., Jochum, K. L. & Hofmann, A. W. 2003. Neodymium and strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and eight MPI-DING reference glasses. Geostandards Newsletter 27, 173–9.CrossRefGoogle Scholar
Richards, M., Duncan, R. A. & Courtillot, V. E. 1989. Flood basalts and hotspot tracks: plumes heads and tails. Science 246, 103–7.CrossRefGoogle Scholar
Shellnutt, J. G. & Zhou, M.-F. 2006. Rifting-related, Permian ferrosyenites in the Panxi region of the Emeishan large Igneous province, SW China. Geochimica et Cosmochimica Acta 70, A579.CrossRefGoogle Scholar
Shellnutt, J. G. & Zhou, M.-F. 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume. Chemical Geology 243, 286316.CrossRefGoogle Scholar
Song, X.-Y., Zhou, M.-F., Cao, Z.-M. & Robinson, P. 2004. Late Permian rifting of the South China craton caused by the Emeishan mantle plume? Journal of Geological Society, London 161, 773–81.CrossRefGoogle Scholar
Song, X. Y., Zhou, M.-F., Hou, Z.-Q., Cao, Z.-M., Wang, Y.-L. & Li, Y. 2001. Geochemical constraints on the mantle source of the upper Permian Emeishan continental flood basalts, southwestern China. International Geology Review 43, 213–25.CrossRefGoogle Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J..), pp. 313–45. Geological Society of London, Special Publication no. 42Google Scholar
Thompson, G. M., Ali, J. R., Song, X. Y. & Jolley, D. W. 2001. Emeishan basalts, southwest China: reappraisal of the formation's type area stratigraphy and a discussion of its significance as a large igneous province. Journal of the Geological Society, London 158, 593–9.CrossRefGoogle Scholar
Thompson, M., Potts, P. J., Kane, J. S. & Wilson, S. 1999. GEOPT5. An international proficiency test for analytical geochemistry laboratories. Report on Round 5. Geostandards Newsletter, 23 pp.Google Scholar
Wang, D. R., Xie, Y. M., Wang, Q. J. & Tao, Z. D. 1994. Geology of Guabang area (Map G-48-25-C). Panxi Geological Team, Geology and Mineral Resources Bureau, Sichuan Province, 1:50000.Google Scholar
Weaver, B. L. 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters 104, 381–97.CrossRefGoogle Scholar
White, R. S. & McKenzie, D. 1989. Magmatism at rift zones: the generation of volcanics continental margins and flood basalts. Journal of Geophysical Research 94, 7685–729.CrossRefGoogle Scholar
White, R. S. & McKenzie, D. 1995. Mantle plumes and flood basalts. Journal of Geophysical Research 100, 543–85.CrossRefGoogle Scholar
Wilson, J. T. 1965. Evidence from ocean islands suggesting movement in the Earth. Royal Society of London Philosophical Transactions A258, 145–67.CrossRefGoogle Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Xiong, X. Y., Xie, Y. M., Nie, K. H., Kan, Z. Z., Ding, L. R. & Guo, J. Q. 1996. Geology of Miyi area (Map G-48-37-A). Panxi Geological Team, Geology and Mineral Resources Bureau, Sichuan Province, 1:50000.Google Scholar
Xu, Y., Chung, S.-L., Jahn, B.-M. & Wu, G. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos 58, 145–68.CrossRefGoogle Scholar
Xu, Y.-G., He, B., Chung, S.-L., Menzies, M. & Frey, F. A. 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology 32, 917–20.CrossRefGoogle Scholar
Yan, D.-P., Zhou, M.-F., Song, H. L. & Fu, Z. R. 2003 a. Structural style and tectonic significance of the Jianglang tectonic dome, eastern margin of the Tibetan Plateau, China. Journal of Structural Geology 25, 765–79.CrossRefGoogle Scholar
Yan, D.-P., Zhou, M.-F., Song, H. L., Wang, X. W. & Malpas, J. 2003 b. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China). Tectonophysics 361, 239–54.CrossRefGoogle Scholar
Yan, D.-P., Zhou, M.-F., Wang, C. Y. & Xia, B. 2006. Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan province, SW China. Journal of Asian Earth Sciences 28, 332–53.CrossRefGoogle Scholar
Yin, H., Huang, X., Zhang, K., Hansen, H. J., Yang, F., Ding, M. & Bie, X. 1992. The effects of volcanism of the Permo-Triassic mass extinction in South China. In Permo-Triassic Events in the Eastern Tethys: Stratigraphy, Classification, and Relations with the Western Tethys (eds Sweet, W. C., Yang, Z. Y., Dickins, J. M. & Yin, H. F..), pp. 146–57. World and Regional Geology 2.Google Scholar
Zhang, Z., Mahoney, J. J., Mao, J. & Wang, F. 2006. Geochemistry of Picritic and Associated Basalt Flows of the Western Emeishan Flood Basalt Province, China. Journal of Petrology 47, 19972019.CrossRefGoogle Scholar
Zhong, H., Zhou, X. H., Zhou, M.-F., Sun, M. & Liu, B. G. 2002. Platinum-group element geochemistry of the Hongge Fe–V–Ti deposit in the Pan-Xi area, southwestern China. Mineralium Deposita 37, 226–39.CrossRefGoogle Scholar
Zhong, H. & Zhu, W.-G. 2006. Geochronology of layered mafic intrusions from the Panxi area in the Emeishan large igneous province, SW China. Mineralium Deposita 41, 599606.CrossRefGoogle Scholar
Zhong, H., Zhu, W.-G., Song, X. Y. & He, D.-F. 2007. SHRIMP U–Pb zircon geochronology, geochemistry, and Nd–Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China. Chemical Geology 236, 112–37.CrossRefGoogle Scholar
Zhou, M.-F., Malpas, J., Song, X. Y., Robinson, P. T., Sun, M., Kennedy, A. K., Lesher, C. M. & Keays, R. R. 2002 a. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters 196, 113–22.CrossRefGoogle Scholar
Zhou, M.-F., Robinson, P. T., Lesher, C. M., Keays, R. R., Zhang, C. J. & Malpas, J. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V oxide deposits, Sichuan Province, SW China. Journal of Petrology 46, 2253–80.CrossRefGoogle Scholar
Zhou, M.-F., Yan, D.-P., Kennedy, A. K., Li, Y. & Ding, J. 2002 b. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze block, South China. Earth and Planetary Science Letters 196, 5167.CrossRefGoogle Scholar
Zhou, M.-F., Zhao, J.-H., Qi, L., Su, W. & Hu, R. Z. 2006. Zircon U–Pb geochronology and elemental and Sr–Nd isotopic geochemistry of Permian mafic rocks in the Funing area, SW China. Contributions to Mineralogy and Petrology 151, 119.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 6
Total number of PDF views: 33 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Longevity of the Permian Emeishan mantle plume (SW China): 1 Ma, 8 Ma or 18 Ma?
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Longevity of the Permian Emeishan mantle plume (SW China): 1 Ma, 8 Ma or 18 Ma?
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Longevity of the Permian Emeishan mantle plume (SW China): 1 Ma, 8 Ma or 18 Ma?
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *