Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-2ktwh Total loading time: 4.285 Render date: 2021-04-16T09:28:33.930Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Unusual genetic architecture of natural variation affecting drug resistance in Drosophila melanogaster

Published online by Cambridge University Press:  17 February 2003

ROLAND CARRILLO
Affiliation:
Department of Genetics, Gardner Hall, North Carolina State University, Raleigh, NC 27695-7614, USA
GREG GIBSON
Affiliation:
Department of Genetics, Gardner Hall, North Carolina State University, Raleigh, NC 27695-7614, USA
Rights & Permissions[Opens in a new window]

Abstract

Naturally occurring genetic variation was quantified for survival time of adult Drosophila melanogaster exposed to chronic ingestion of the drugs nicotine, caffeine, dopamine, tyramine and octopamine. Responses to nicotine, tyramine and octopamine were genetically correlated in both sexes, whereas caffeine response correlated with starvation resistance. However, there is also genetic variation that is specific for each of the drugs. Females tended to be more resistant than males to nicotine and caffeine but sex-by-genotype interactions were also seen for these drugs and for the response to dopamine. An unusual and complex genetic architecture was observed in crosses between lines with different responses to caffeine ingestion. Additive and dominance components were clearly seen from the analysis of F1 individuals, but increased female resistance to caffeine in backcross generations and increased male sensitivity in F2 generations confused the interpretation of possible epistatic contributions.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 125 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Unusual genetic architecture of natural variation affecting drug resistance in Drosophila melanogaster
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Unusual genetic architecture of natural variation affecting drug resistance in Drosophila melanogaster
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Unusual genetic architecture of natural variation affecting drug resistance in Drosophila melanogaster
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *