Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T14:25:32.230Z Has data issue: false hasContentIssue false

Temporal stability of P–M cytotype polymorphism in a natural population of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Hassan Izaabel*
Affiliation:
Laboratoire de Génétique des Populations, Universités Paris 6 et Paris 7, Tour 42, 2 place Jussieu, F-75005 Paris, France
Stephane Ronsseray
Affiliation:
Laboratoire de Génétique des Populations, Universités Paris 6 et Paris 7, Tour 42, 2 place Jussieu, F-75005 Paris, France
Dominique Anxolabéhère
Affiliation:
Laboratoire de Génétique des Populations, Universités Paris 6 et Paris 7, Tour 42, 2 place Jussieu, F-75005 Paris, France
*
*Corresponding authorS.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The P–M system of hybrid dysgenesis in Drosophila melanogaster is a syndrome of genetic abnormalities which appears in the progeny of crosses between strains different with regard to their possession of ‘P’ transposable elements. Cytotype is an extrachromosomal property which regulates the mobility of the P element. We report here data showing that a cytotype polymorphism previously observed in a natural population from North-Africa is stable over a period of 5 years. A potentially high rate of mutation is associated with this cytotype polymorphism. Explanations of the appearance of a cytotype polymorphism are proposed and the consequences for the genetic load induced by transposable elements are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Ajioka, W. J. & Eanes, W. F. (1986). Rapid accumulation of parasitic DNA: de novo versus naturally occurring insertions of P elements in Drosophila melanogaster. (Submitted).Google Scholar
Anxolabéhère, D., Nouaud, D. & Périquet, G. (1982 a). Etude de la variabilité du système P–M de dysgénésie des hybrides entre populations de Drosophila melanogaster. Compte Rendu de l'Académie des Sciences de Paris 294, 913918.Google Scholar
Anxolabéhère, D., Nouaud, D. & Périquet, G. (1982 b). Cytotype polymorphism of the P–M system in two wild populations of Drosophila melanogaster. Proceedings of the National Academy of Sciences U.S.A 79, 78017803.CrossRefGoogle Scholar
Anxolabéhère, D., Hu-Kai, , Nouaud, D., Périquet, G. & Ronsseray, S. (1984). The geographical distribution of P–M hybrid dysgenesis in Drosophila melanogaster. Génétique, Sélection, Evolution 16, 1526.Google ScholarPubMed
Anxolabéhère, D., Nouaud, D., Périquet, G.Tchen, P. (1985). P element distribution in Eurasian populations of Drosophila melanogaster: a genetic and molecular analysis. Proceedings of the National Academy of Sciences U.S.A 82, 54185422.CrossRefGoogle ScholarPubMed
Biémont, C. (1986). Mdg-1 and I mobile element polymorphism in Drosophila melanogaster. Chromosoma 93, 393397.CrossRefGoogle Scholar
Bregliano, J. C. & Kidwell, M. G. (1983). Hybrid dysgenesis determinants. In Mobile Genetic Elements (ed. Shapiro, J. A.), pp. 363410. New-York: Academic Press.Google Scholar
Engels, W. R. (1979). Hybrid dysgenesis in Drosophila melanogaster: rules of inheritance of female sterility. Genetical Research 33, 219236.CrossRefGoogle Scholar
Engels, W. R. (1981). Germline hypermutability and it relation to hybrid dysgenesis and cytotype. Genetics 98, 565587.CrossRefGoogle ScholarPubMed
Engels, W. R. & Preston, C. R. (1981). Components of hybrid dysgenesis in a wild population of Drosophila melanogaster. Genetics 95, 111128.CrossRefGoogle Scholar
Engels, W. R. (1983). The P family of transposable elements in Drosophila. Annual Review of Genetics 17, 315344.CrossRefGoogle Scholar
Green, M. M. (1977). Genetic instability in Drosophila melanogaster: de novo induction of putative insertion mutants. Proceedings of the National Academy of Sciences U.S.A 74, 34903493.CrossRefGoogle Scholar
Kidwell, M. G., Kidwell, J. F. & Sved, J. A. (1977). Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86, 813833.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1980). The potential of natural populations with respect to the P–M system of hybrid dysgenesis in Drosophila melanogaster. Genetics 94, s53–s54.Google Scholar
Kidwell, M. G., Novy, J. B. & Feeley, S. M. (1981). Rapid unidirectional change of hybrid dysgenesis potential in Drosophila. Journal of Heredity 72, 3238.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1983). Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proceedings of the National Academy of Sciences U.S.A. 80, 16551659.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1985). Hybrid dysgenesis in Drosophila melanogaster: nature and inheritance of P element regulation. Genetics 111, 337350.CrossRefGoogle ScholarPubMed
Leigh-Brown, A. J. & Moss, J. E. (1987). Transposition of the I element and copia in natural population of Drosophila melanogaster. Genetical Research 49, 2, 121128.CrossRefGoogle Scholar
Montgomery, E. A. & Langley, Ch. H. (1983). Transposable elements in Mendelian populations. II. Distribution of three copia-like elements in a natural population of Drosophila melanogaster. Genetics 104, 473483.CrossRefGoogle Scholar
Mukai, T., Baba, M., Akiyama, M., Uowaki, N., Kusakabe, S. & Tajima, F. (1985). Rapid change in mutation rate in a local population of Drosophila melanogaster. Proceedings of the National Academy of Sciences U.S.A. 82, 76717675.CrossRefGoogle Scholar
Ronsseray, S. & Anxolabéhère, D. (1986). Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster. Chromosoma 94, 433440.CrossRefGoogle Scholar