Skip to main content Accessibility help
×
Home

Scrapie-resistant sheep show certain coat colour characteristics

  • R. M. SAWALHA (a1), L. BELL (a2), S. BROTHERSTONE (a3), I. WHITE (a3), A. J. WILSON (a3) and B. VILLANUEVA (a1)...

Summary

Susceptibility to scrapie is known to be associated with polymorphisms at the prion protein (PrP) gene, and this association is the basis of current selective programmes implemented to control scrapie in many countries. However, these programmes might have unintended consequences for other traits that might be associated with PrP genotype. The objective of this study was to investigate the relationship between PrP genotype and coat colour characteristics in two UK native sheep breeds valued for their distinctive coat colour patterns. Coat colour pattern, darkness and spotting and PrP genotype records were available for 11 674 Badgerfaced Welsh Mountain and 2338 Shetland sheep. The data were analysed with a log–linear model using maximum likelihood. Results showed a strong significant association of PrP genotype with coat colour pattern in Badgerfaced Welsh Mountain and Shetland sheep and with the presence of white spotting in Shetland sheep. Animals with the ARR/ARR genotype (the most scrapie resistant) had higher odds of having a light dorsum and a dark abdomen than the reverse pattern. The implication of these associations is that selection to increase resistance to scrapie based only on PrP genotype could result in change in morphological diversity and affect other associated traits such as fitness.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Scrapie-resistant sheep show certain coat colour characteristics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Scrapie-resistant sheep show certain coat colour characteristics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Scrapie-resistant sheep show certain coat colour characteristics
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. Sir Stephen Watson Building, Bush Estate, Penicuik, EH26 0PH, UK. e-mail: rami.sawalha@sac.ac.uk

References

Hide All
Agresti, A. (1996). An Introduction to Categorical Data Analysis, 2nd edn.New York: Wiley & Sons.
Arnold, M., Meek, C., Webb, C. R. & Hoinville, L. J. (2002). Assessing the efficacy of a ram-genotyping programme to reduce susceptibility to scrapie in Great Britain. Preventive Veterinary Medicine 56, 227249.
Baylis, M., Chihota, C., Stevenson, E., Goldmann, W., Smith, A., Sivam, K., Tongue, S. & Gravenor, M. B. (2004). Risk of scrapie in British sheep of different prion protein genotype. Journal of General Virology 85, 27352740.
Bell, L., Goodman, T., Martin, J. H., Rosbotham, M. & Stockwell, C. (2005). A survey of scrapie PrP genotype results and their relationship with coat colour and hornedness in selected UK rare breed sheep. Proceedings of the British Society of Animal Science, p. 124.
Belt, P. B., Muileman, I. H., Schreuder, B. E., Bos-de Ruijter, J., Gielkens, A. L. & Smits, M. A. (1995). Identification of 5 allelic variants of the sheep PrP gene and their association with natural scrapie. Journal of General Virology 76, 509517.
Beraldi, D., McRae, A. F., Gratten, J., Slate, J., Visscher, P. M. & Pemberton, J. M. (2006). Development of a linkage Map and mapping of phenotypic polymorphisms in a free-living population of Soay sheep (Ovis aries). Genetics 173, 15211537.
Goldmann, W., Hunter, N., Smith, G., Foster, J. & Hope, J. (1994). PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. Journal of General Virology 75, 989995.
Gratten, J., Beraldi, D., Lowder, B. V., McRae, A. F., Visscher, P. M., Pemberton, J. M. & Slate, J. (2007). Compelling evidence that a single nucleotide substitution in TYRP1 is responsible for coat-colour polymorphism in a free-living population of Soay sheep. Proceedings of the Royal Society B-Biological Sciences 274, 619626.
Gratten, J., Wilson, A. J., McRae, A. F., Beraldi, D., Visscher, P. M., Pemberton, J. M. & Slate, J. (2008). A localized negative genetic correlation constrains microevolution of coat color in wild sheep. Science 319, 318320.
Hoekstra, H. E. & Nachman, M. W. (2003). Different genes underlie adaptive melanism in different populations of rock pocket mice. Molecular Ecology 12, 11851194.
Hunter, N., Foster, J. D., Goldmann, W., Stear, M. J., Hope, J. & Bostock, C. (1996). Natural scrapie in a closed flock of Cheviot sheep occurs only in specific PrP genotypes. Archives of Virology 141, 809824.
Jewell, P. A. (1971). The case for the preservation of rare breeds of domestic livestock. Veterinary Record 89, 524527.
Klungland, H. & Våge, D. I. (2003). Pigmentary switches in domestic animal species. Melanocortin System 994, 331338.
Lühken, G., Brandt, H. R., Buschmann, A., Groschup, M. H. & Erhardt, G. (2006). Microsatellite CTSBJ12 is located distal to the ovine prion protein gene on OAR13 and is not associated with scrapie susceptibility. Animal Genetics 37, 426427.
McRae, A. F., McEwan, J. C., Dodds, K. G., Wilson, T., Crawford, A. M. & Slate, J. (2002). Linkage disequilibrium in domestic sheep. Genetics 160, 11131122.
Moorcroft, P. R., Albon, S. D., Pemberton, J. M., Stevenson, I. R. & Clutton-Brock, T. H. (1996). Density-dependent selection in a fluctuating ungulate population. Proceedings of the Royal Society B-Biological Sciences 263, 3138.
Parsons, Y. M., Fleet, M. R. & Cooper, D. W. (1999 a). Isolation of the ovine agouti coding sequence. Pigment Cell Research 12, 394397.
Parsons, Y. M., Fleet, M. R. & Cooper, D. W. (1999 b). The Agouti gene: a positional candidate for recessive self-colour pigmentation in the Australian merino. Australian Journal of Agricultural Research 50, 10991103.
Renieri, C., Pieramati, C., Olivieri, O., Trabalza Marinucci, M. & Micarelli, F. (1989). Frequencies of fleece colour in Upper Visso sheep. Small Ruminant Research 2, 175180.
Renieri, C., Valbonesi, A., La Mannaa, V., Antonini, M. & Lauvergne, J. J. (2008). Inheritance of coat colour in Merino sheep. Small Ruminant Research 74, 2329.
Roughsedge, T., Villanueva, B. & Woolliams, J. A. (2006). Determining the relationship between restorative potential and size of a gene bank to alleviate the risks inherent in a scrapie eradication breeding programme. Livestock Science 100, 231241.
Ryder, M. L. (1976). Why should rare breeds of livestock be saved? International Zoo Yearbook 16, 244249.
Sawalha, R. M., Brotherstone, S., Conington, J. & Villanueva, B. (2007). Lambs with scrapie susceptible genotypes have higher postnatal survival. PLoS One 2, e1236. doi:10.1371/journal.pone.0001236.
Sawalha, R. M., Brotherstone, S., Lambe, N. R. & Villanueva, B. (2008). Association of the prion protein gene with individual tissue weights in Scottish Blackface sheep. Journal of Animal Science 86, 17371746.
Sweeney, T. & Hanrahan, J. P. (2008). The evidence of associations between prion protein genotype and production, reproduction and health traits in sheep. Veterinary Research 39, 28.
Våge, D. I., Klungland, H., Lu, D. & Cone, R. D. (1999). Molecular and pharmacological characterization of dominant black coat color in sheep. Mammalian Genome 10, 3943.
Våge, D. I., Fleet, M. R., Ponz, R., Olsen, R. T., Monteagudo, L. V., Tejedor, M. T., Arruga, M. V., Gagliardi, R., Postiglioni, A., Nattrass, G. S. & Klungland, H. (2003). Mapping and characterization of the dominant black colour locus in Sheep. Pigment Cell Research 16, 693697.
Voisey, J. & van Daal, A. (2002). Agouti: from mouse to man, from skin to fat. Pigment Cell Research 15, 1018.
Warner, R. G., Morris, D. & Dawson, M. (2006). PrP genotype progression in flocks participating in the National Scrapie Plan for Great Britain. Veterinary Record 159, 473479.
Yen, T. T., Gill, A. M., Frigeri, L. G. & Wolff, G. L. (1994). Obesity, diabetes and neoplasia in yellow A vy/- mice: ectopic expression of the agouti gene. FASEB Journal 8, 479488.

Scrapie-resistant sheep show certain coat colour characteristics

  • R. M. SAWALHA (a1), L. BELL (a2), S. BROTHERSTONE (a3), I. WHITE (a3), A. J. WILSON (a3) and B. VILLANUEVA (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed