Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T06:27:07.848Z Has data issue: false hasContentIssue false

Sandy: a new mouse model for platelet storage pool deficiency

Published online by Cambridge University Press:  14 April 2009

Richard T. Swank
Affiliation:
Roswell Park Cancer Institute, Molecular and Cellular Biology Department, 666 Elm St, Buffalo, NY 14263
Hope O. Sweet
Affiliation:
The Jackson Laboratory, Bar Harbor, Maine 04609
Muriel T. Davisson
Affiliation:
The Jackson Laboratory, Bar Harbor, Maine 04609
Madonna Reddington
Affiliation:
Roswell Park Cancer Institute, Molecular and Cellular Biology Department, 666 Elm St, Buffalo, NY 14263
Edward K. Novak
Affiliation:
Roswell Park Cancer Institute, Molecular and Cellular Biology Department, 666 Elm St, Buffalo, NY 14263
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sandy (sdy) is a mouse mutant with diluted pigmentation which recently arose in the DBA/2J strain. Genetic tests indicate it is caused by an autosomal recessive mutation on mouse Chromosome 13 near the cr and Xt genetic loci. This mutation is different genetically and hematologically from previously described mouse pigment mutations with storage pool deficiency (SPD). The sandy mutant has diluted pigmentation in both eyes and fur, is fully viable and has prolonged bleeding times. Platelet serotonin levels are extremely low although ATP dependent acidification activity of platelet organelles appears normal. Also, platelet dense granules are extremely reduced in number when analysed by electron microscopy of unfixed platelets. Platelets have abnormal uptake and flashing of the fluorescent dye mepacrine. Secretion of lysosomal enzymes from kidney and from thrombin-stimulated platelets is depressed 2- and 3-fold, and ceroid pigment is present in kidney. Sandy platelets have a reduced rate of aggregation induced by collagen. The sandy mutant has an unusually severe dense granule defect and thus may be an appropriate model for cases of human Hermansky-Pudlak syndrome with similarly extreme types of SPD. It represents the tenth example of a mouse mutant with simultaneous defects in melanosomes, lysosomes and/or platelet dense granules.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Ahmed, F., Lundin, L. G. & Shire, J. G. M. (1989). Lysosomal mutations increase susceptibility to anesthetics. Experientia 45, 11331135.Google Scholar
Anderson, R. G. & Orci, L. (1988). A view of acidic intracellular compartments. Journal of Cell Biology 106, 539543.CrossRefGoogle ScholarPubMed
Baca, M. E., Mowat, A. M. C. I. & Parrott, D. M. V. (1989). Immunologic studies of NK cell deficient beige mice. II. Analysis of T-lymphocyte functions in beige mice. Immunology 66, 131137.Google Scholar
Barak, Y. & Nir, E. (1987). Chediak–Higashi Syndrome. American Journal of Pediatric Hematology Oncology 9, 4255.CrossRefGoogle ScholarPubMed
Blume, R. S. & Wolff, S. M. (1972). The Chediak–Higashi Syndrome: studies in four patients and a review of the literature. Medicine 51, 247280.Google Scholar
Brandt, E. J., Swank, R. T. & Novak, E. K. (1981). The murine Chediak–Higashi mutation and other murine pigment mutations. In Immunologic Defects in Laboratory Animals (ed. Gershwin, M. E. and Merchant, B.), pp. 99117. Plenum Press, New York.Google Scholar
Brandt, E. J., Elliott, R. W. & Swank, R. T. (1975). Defective lysosomal enzyme secretion in kidneys of Chediak–Higashi (beige) mice. Journal of Cell Biology 67, 744788.Google ScholarPubMed
Brecher, G. & Cronkite, E. P. (1950). Morphology and enumeration of human blood platelets. Journal of Applied Physiology – Respiratory Environmental and Exercise Physiology 3, 365377.Google ScholarPubMed
Brown, J. A., Novak, E. K. & Swank, R. T. (1985). Effects of ammonia on processing and secretion of precursor and mature lysosomal enzyme from macrophages of normal and pale ear mice: evidence for two distinct pathways. Journal of Cell Biology 100, 18941904.Google Scholar
Colbaugh, P. A., Stookey, M. & Draper, R. K. (1989). Impaired lysosomes in a temperature-sensitive mutant of Chinese hamster ovary cells. Journal of Cell Biology 108, 22112219.Google Scholar
Crosti, P. F. & Lucchelli, P. E. (1962). An easy method to determine the serotonin content of human platelets. Journal of Clinical Pathology 15, 191193.Google Scholar
Daniels, T. M., Fass, D. N., White, J. G., Bowie, E. J. W. (1986). Platelet storage pool deficiency in pigs. Blood 67, 10431047.Google Scholar
Davisson, M. T., Roderick, T. H., Doolittle, D. P., Hillyard, A. L. & Guidi, J. N. (1990). Locus map of the mouse (Mus musculus'domesticus). In Genetic Maps (ed. O'Brien, S. J.). Cold Spring Harbor.Google Scholar
Dean, G. E., Fishkes, H., Nelson, P. J. & Rudnick, G. (1984). The hydrogen ion-pumping adenosine triphos-phatase of platelet dense granule membrane. Journal of Biological Chemistry 259, 95699574.Google Scholar
Dejana, E., Callioni, A., Quintana, A. & Gaetano, G. (1979). Bleeding time in laboratory animals. II. A comparison of different assay conditions in rats. Thrombosis Research 15, 191197.Google Scholar
Deol, M. S. & Green, M. C. (1966). Snell's waltzer, a new mutation affecting behaviour and the inner ear in the mouse. Genetical Research, Cambridge 8, 339345.Google Scholar
Depinho, R. A. & Kaplan, K. L. (1985). The Hermansky–Pudlak syndrome, report of three cases and review of pathophysiology and management considerations. Medicine 64, 192202.Google Scholar
Ganz, T., Metcalf, J. A., Gallin, T. I., Boxer, L. A. & Lehrer, R. I. (1988). Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak–Higashi syndrome and ‘specific’ granule deficiency. Journal of Clinical Investigation 82, 552556.Google Scholar
Gibb, S., Hakansson, E. M., Lundin, L.-G. & Shire, J. G. M. (1981). Reduced pigmentation (rp) a new coat colour gene with effects on kidney lysosomal glycosidases in the mouse. Genetical Research, Cambridge 37, 95103.Google Scholar
Green, M. C. (1989). Catalog of mutant genes and polymorphic loci. In Genetic Variants and Strains of the Laboratory Mouse, 2nd edn (ed. Lyon, M. F. and Searle, A. G.), pp. 12404. Oxford University Press, New York.Google Scholar
Green, E. L. (1985). Tables and a computer program for analysing linkage data. Mouse News Letter 73, 20.Google Scholar
Hawiger, J. (1989). Platelet secretory pathways: an overview. In Methods in Enzymology, part A, vol. 169 (ed. Hawiger, J.), pp. 191195. Academic Press, New York.Google Scholar
Holland, J. M. (1976). Serotonin deficiency and prolonged bleeding in beige mice. Proceedings of the Society of Experimental Biology in Medicine 151, 3239.CrossRefGoogle ScholarPubMed
Hui, S.-W. & Costa, J. L. (1979). Topography and thickness of air-dried human platelets measured by correlative transmission and scanning electron microscopy. Journal of Microscopy 115, 203206.Google Scholar
Lages, B., Dangelmaier, C. A., Holmsen, H. & Weiss, H. J. (1988). Specific correction of impaired acid hydrolase secretion in storage pool deficient platelets by adenosine diphosphate. Journal of Clinical Investigation 81, 18651872.Google Scholar
Lages, B. (1987). Studies on storage mechanisms in the dense granules: storage pool deficient platelets. In Platelet Responses and Metabolism, vol. II (ed. Holmsen, H.), pp. 135151. CRC Press, Boca Raton.Google Scholar
Lorez, H. P., Da Prada, M. & Pletscher, A. (1975). Flashing phenomenon in blood platelets stained with fluorescent basic drugs. Experientia 31, 593595.CrossRefGoogle ScholarPubMed
Mather, K. (1938). Statistical Analysis in Biology, p. 56. Interscience Publishers, New York.Google Scholar
McEver, R. P. & Majerus, P. (1989). Inherited disorders of platelets. In The Metabolic Basis of Inherited Disease, 6th edn (ed. Scriver, C. R., Beaudet, A. L., Sly, W. S. and Valle, D.), pp. 22192235. McGraw-Hill, New York.Google Scholar
McGarry, M. P., Novak, E. K. & Swank, R. T. (1986). Progenitor cell defect correctable by bone marrow transplantation in five independent mouse models of platelet storage pool deficiency. Experimental Hematology 14, 261265.Google Scholar
Meyers, K. M., Holmsen, H., Seachord, C. L., Hopkins, G. E., Borchard, R. E. & Padgett, G. H. (1979). Storage pool deficiency in platelets from Chediak–Higashi cattle. American Journal of Physiology 237, R239–R240.Google Scholar
Meyers, K. M., Holmsen, H., Seachord, C. L., Hopkins, G. & Gorham, J. (1979). Characterization of platelets from normal mink and mink with the Chediak–Higashi Syndrome. American Journal of Hematology 7, 137146.Google Scholar
Nes, N. B., Lium, M. & Sjaastad, O. (1983). A Chediak–Higashi-like syndrome in Arctic blue foxes. Finsk. Veterinaertidsskrift 89, 313317.Google Scholar
Nieuwenhius, H. K., Akkerman, J.-W. N. & Sixma, J. J. (1987). Patients with a prolonged bleeding time and normal aggregation tests may have storage pool deficiency: studies on one hundred six patients. Blood 70, 620623.CrossRefGoogle Scholar
Nishimura, M., Masatoshi, I., Nakano, T., Nishikawa, T., Miyamoto, M., Kobayashi, T. & Kitamura, Y. (1989). Beige rat: a new animal model of Chediak–Higashi syndrome. Blood 74, 270273.Google Scholar
Novak, E. K., Sweet, H. O., Prochazka, M., Parentis, M., Soble, R., Reddington, M., Cairo, A. & Swank, R. T. (1988). Cocoa: a new mouse model for platelet storage pool deficiency. British Journal of Hematology 69, 371378.Google Scholar
Novak, E. K., McGarry, M. P. & Swank, R. T. (1985). Correction of symptoms of platelet storage pool deficiency in animal models for Chediak–Higashi Syndrome. Blood 66, 11961201.Google Scholar
Novak, E. K., Hui, S.-W. & Swank, R. T. (1984). Platelet storage pool deficiency in mouse pigment mutations associated with seven distinct genetic loci. Blood 63, 536544.Google Scholar
Novak, E. K., Hui, S.-W. & Swank, R. T. (1981). The mouse pale ear mutant as a possible animal model for human platelet storage pool deficiency. Blood 57, 3843.CrossRefGoogle ScholarPubMed
Novick, P., Field, C. & Schekman, R. (1980). Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205215.CrossRefGoogle ScholarPubMed
Prieur, D. J. & Meyers, K. M. (1981). Evaluation of the platelet storage pool deficiency in a feline counterpart of the Chediak–Higashi Syndrome. American Journal of Hematology 11, 241253.Google Scholar
Rao, A. K. & Holmsen, H. (1986). Congenital disorders of platelet function. Seminars in Hematology 23, 102118.Google ScholarPubMed
Raymond, S. L. & Dodds, W. J. (1975). Characterization of the fawn-hooded rat as a model for hemostatic studies. Thrombosis et Diathesis Haemorrhagica 33, 361369.Google Scholar
Reddington, M., Novak, E. K., Hurley, E., Medda, C., McGarry, M. P. & Swank, R. T. (1987). Immature dense granules in platelets from mice with storage pool disease. Blood 69, 13001306.Google Scholar
Rendu, F., Maclouf, J., Launay, J.-M., Bornot, C., Levy-Toledano, S., Tanzer, J. & Caen, J. (1987). Hermansky–Pudlak platelets: further studies on release-reaction and protein phosphorylations. American Journal of Hematology 25, 165174.Google Scholar
Rothman, J. H., Yamashiro, C. T., Kane, P. M. & Stevens, T. H. (1989). Protein targetting to the yeast vacuole. Trends in Biochemical Sciences 14, 347350.Google Scholar
Skaer, R. J., Flemans, R. J. & McQuilkan, S. (1981). Mepacrine stains the dense bodies of human platelets and not platelet lysosomes. British Journal of Hematology 49, 435438.Google Scholar
Svendsen, L., Brogli, M., Lindeberg, G. & Stoker, K. (1984). Differentiation of thrombin and factor Xa amidolytic activity in plasma by means of a synthetic proteinase inhibitor. Thrombosis Research 34, 457462.Google Scholar
Takeuchi, K. H. & Swank, R. T. (1989). Inhibitors of elastase and cathepsin G in Chediak–Higashi (beige) neutrophils. Journal of Biological Chemistry 264, 74317436.Google Scholar
Weiss, H. J., Witte, L. D., Kaplan, K. L., Lages, B. A., Chernoff, A. N., Goodman, D. S. & Baumgartner, H. R. (1979). Heterogeneity in storage pool deficiency: Studies on granule-bound substances in 18 patients including variants deficient in α-granules, platelet factor 4, β-thromboglobulin and platelet-derived growth factor. Blood 54, 12961319.Google Scholar
Witkop, C. J., Quevedo, W. C., Fitzpatrick, T. B. & King, R. A. (1989). Albinism. In The Metabolic Basis of Inherited Disease, 6th edn (ed. Scriver, C. R., Beaudet, A. L., Sly, W. S. and Valle, D.), pp. 29052947. McGraw-Hill, New York.Google Scholar
Wolff, K. & Schreiner, E. (1970). Epidermal lysosomes. Archives of Dermatology 101, 276286.Google Scholar