Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-rz424 Total loading time: 0.416 Render date: 2021-03-05T18:20:52.610Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Sandy: a new mouse model for platelet storage pool deficiency

Published online by Cambridge University Press:  14 April 2009

Richard T. Swank
Affiliation:
Roswell Park Cancer Institute, Molecular and Cellular Biology Department, 666 Elm St, Buffalo, NY 14263
Hope O. Sweet
Affiliation:
The Jackson Laboratory, Bar Harbor, Maine 04609
Muriel T. Davisson
Affiliation:
The Jackson Laboratory, Bar Harbor, Maine 04609
Madonna Reddington
Affiliation:
Roswell Park Cancer Institute, Molecular and Cellular Biology Department, 666 Elm St, Buffalo, NY 14263
Edward K. Novak
Affiliation:
Roswell Park Cancer Institute, Molecular and Cellular Biology Department, 666 Elm St, Buffalo, NY 14263
Rights & Permissions[Opens in a new window]

Summary

Sandy (sdy) is a mouse mutant with diluted pigmentation which recently arose in the DBA/2J strain. Genetic tests indicate it is caused by an autosomal recessive mutation on mouse Chromosome 13 near the cr and Xt genetic loci. This mutation is different genetically and hematologically from previously described mouse pigment mutations with storage pool deficiency (SPD). The sandy mutant has diluted pigmentation in both eyes and fur, is fully viable and has prolonged bleeding times. Platelet serotonin levels are extremely low although ATP dependent acidification activity of platelet organelles appears normal. Also, platelet dense granules are extremely reduced in number when analysed by electron microscopy of unfixed platelets. Platelets have abnormal uptake and flashing of the fluorescent dye mepacrine. Secretion of lysosomal enzymes from kidney and from thrombin-stimulated platelets is depressed 2- and 3-fold, and ceroid pigment is present in kidney. Sandy platelets have a reduced rate of aggregation induced by collagen. The sandy mutant has an unusually severe dense granule defect and thus may be an appropriate model for cases of human Hermansky-Pudlak syndrome with similarly extreme types of SPD. It represents the tenth example of a mouse mutant with simultaneous defects in melanosomes, lysosomes and/or platelet dense granules.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Ahmed, F., Lundin, L. G. & Shire, J. G. M. (1989). Lysosomal mutations increase susceptibility to anesthetics. Experientia 45, 11331135.CrossRefGoogle Scholar
Anderson, R. G. & Orci, L. (1988). A view of acidic intracellular compartments. Journal of Cell Biology 106, 539543.CrossRefGoogle ScholarPubMed
Baca, M. E., Mowat, A. M. C. I. & Parrott, D. M. V. (1989). Immunologic studies of NK cell deficient beige mice. II. Analysis of T-lymphocyte functions in beige mice. Immunology 66, 131137.Google Scholar
Barak, Y. & Nir, E. (1987). Chediak–Higashi Syndrome. American Journal of Pediatric Hematology Oncology 9, 4255.CrossRefGoogle ScholarPubMed
Blume, R. S. & Wolff, S. M. (1972). The Chediak–Higashi Syndrome: studies in four patients and a review of the literature. Medicine 51, 247280.CrossRefGoogle Scholar
Brandt, E. J., Swank, R. T. & Novak, E. K. (1981). The murine Chediak–Higashi mutation and other murine pigment mutations. In Immunologic Defects in Laboratory Animals (ed. Gershwin, M. E. and Merchant, B.), pp. 99117. Plenum Press, New York.CrossRefGoogle Scholar
Brandt, E. J., Elliott, R. W. & Swank, R. T. (1975). Defective lysosomal enzyme secretion in kidneys of Chediak–Higashi (beige) mice. Journal of Cell Biology 67, 744788.CrossRefGoogle ScholarPubMed
Brecher, G. & Cronkite, E. P. (1950). Morphology and enumeration of human blood platelets. Journal of Applied Physiology – Respiratory Environmental and Exercise Physiology 3, 365377.Google ScholarPubMed
Brown, J. A., Novak, E. K. & Swank, R. T. (1985). Effects of ammonia on processing and secretion of precursor and mature lysosomal enzyme from macrophages of normal and pale ear mice: evidence for two distinct pathways. Journal of Cell Biology 100, 18941904.CrossRefGoogle ScholarPubMed
Colbaugh, P. A., Stookey, M. & Draper, R. K. (1989). Impaired lysosomes in a temperature-sensitive mutant of Chinese hamster ovary cells. Journal of Cell Biology 108, 22112219.CrossRefGoogle Scholar
Crosti, P. F. & Lucchelli, P. E. (1962). An easy method to determine the serotonin content of human platelets. Journal of Clinical Pathology 15, 191193.CrossRefGoogle ScholarPubMed
Daniels, T. M., Fass, D. N., White, J. G., Bowie, E. J. W. (1986). Platelet storage pool deficiency in pigs. Blood 67, 10431047.Google ScholarPubMed
Davisson, M. T., Roderick, T. H., Doolittle, D. P., Hillyard, A. L. & Guidi, J. N. (1990). Locus map of the mouse (Mus musculus'domesticus). In Genetic Maps (ed. O'Brien, S. J.). Cold Spring Harbor.Google Scholar
Dean, G. E., Fishkes, H., Nelson, P. J. & Rudnick, G. (1984). The hydrogen ion-pumping adenosine triphos-phatase of platelet dense granule membrane. Journal of Biological Chemistry 259, 95699574.Google ScholarPubMed
Dejana, E., Callioni, A., Quintana, A. & Gaetano, G. (1979). Bleeding time in laboratory animals. II. A comparison of different assay conditions in rats. Thrombosis Research 15, 191197.CrossRefGoogle Scholar
Deol, M. S. & Green, M. C. (1966). Snell's waltzer, a new mutation affecting behaviour and the inner ear in the mouse. Genetical Research, Cambridge 8, 339345.CrossRefGoogle ScholarPubMed
Depinho, R. A. & Kaplan, K. L. (1985). The Hermansky–Pudlak syndrome, report of three cases and review of pathophysiology and management considerations. Medicine 64, 192202.CrossRefGoogle ScholarPubMed
Ganz, T., Metcalf, J. A., Gallin, T. I., Boxer, L. A. & Lehrer, R. I. (1988). Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak–Higashi syndrome and ‘specific’ granule deficiency. Journal of Clinical Investigation 82, 552556.CrossRefGoogle ScholarPubMed
Gibb, S., Hakansson, E. M., Lundin, L.-G. & Shire, J. G. M. (1981). Reduced pigmentation (rp) a new coat colour gene with effects on kidney lysosomal glycosidases in the mouse. Genetical Research, Cambridge 37, 95103.CrossRefGoogle ScholarPubMed
Green, M. C. (1989). Catalog of mutant genes and polymorphic loci. In Genetic Variants and Strains of the Laboratory Mouse, 2nd edn (ed. Lyon, M. F. and Searle, A. G.), pp. 12404. Oxford University Press, New York.Google Scholar
Green, E. L. (1985). Tables and a computer program for analysing linkage data. Mouse News Letter 73, 20.Google Scholar
Hawiger, J. (1989). Platelet secretory pathways: an overview. In Methods in Enzymology, part A, vol. 169 (ed. Hawiger, J.), pp. 191195. Academic Press, New York.Google Scholar
Holland, J. M. (1976). Serotonin deficiency and prolonged bleeding in beige mice. Proceedings of the Society of Experimental Biology in Medicine 151, 3239.CrossRefGoogle ScholarPubMed
Hui, S.-W. & Costa, J. L. (1979). Topography and thickness of air-dried human platelets measured by correlative transmission and scanning electron microscopy. Journal of Microscopy 115, 203206.CrossRefGoogle ScholarPubMed
Lages, B., Dangelmaier, C. A., Holmsen, H. & Weiss, H. J. (1988). Specific correction of impaired acid hydrolase secretion in storage pool deficient platelets by adenosine diphosphate. Journal of Clinical Investigation 81, 18651872.CrossRefGoogle ScholarPubMed
Lages, B. (1987). Studies on storage mechanisms in the dense granules: storage pool deficient platelets. In Platelet Responses and Metabolism, vol. II (ed. Holmsen, H.), pp. 135151. CRC Press, Boca Raton.Google Scholar
Lorez, H. P., Da Prada, M. & Pletscher, A. (1975). Flashing phenomenon in blood platelets stained with fluorescent basic drugs. Experientia 31, 593595.CrossRefGoogle ScholarPubMed
Mather, K. (1938). Statistical Analysis in Biology, p. 56. Interscience Publishers, New York.Google Scholar
McEver, R. P. & Majerus, P. (1989). Inherited disorders of platelets. In The Metabolic Basis of Inherited Disease, 6th edn (ed. Scriver, C. R., Beaudet, A. L., Sly, W. S. and Valle, D.), pp. 22192235. McGraw-Hill, New York.Google Scholar
McGarry, M. P., Novak, E. K. & Swank, R. T. (1986). Progenitor cell defect correctable by bone marrow transplantation in five independent mouse models of platelet storage pool deficiency. Experimental Hematology 14, 261265.Google ScholarPubMed
Meyers, K. M., Holmsen, H., Seachord, C. L., Hopkins, G. E., Borchard, R. E. & Padgett, G. H. (1979). Storage pool deficiency in platelets from Chediak–Higashi cattle. American Journal of Physiology 237, R239–R240.Google ScholarPubMed
Meyers, K. M., Holmsen, H., Seachord, C. L., Hopkins, G. & Gorham, J. (1979). Characterization of platelets from normal mink and mink with the Chediak–Higashi Syndrome. American Journal of Hematology 7, 137146.CrossRefGoogle ScholarPubMed
Nes, N. B., Lium, M. & Sjaastad, O. (1983). A Chediak–Higashi-like syndrome in Arctic blue foxes. Finsk. Veterinaertidsskrift 89, 313317.Google Scholar
Nieuwenhius, H. K., Akkerman, J.-W. N. & Sixma, J. J. (1987). Patients with a prolonged bleeding time and normal aggregation tests may have storage pool deficiency: studies on one hundred six patients. Blood 70, 620623.Google Scholar
Nishimura, M., Masatoshi, I., Nakano, T., Nishikawa, T., Miyamoto, M., Kobayashi, T. & Kitamura, Y. (1989). Beige rat: a new animal model of Chediak–Higashi syndrome. Blood 74, 270273.Google ScholarPubMed
Novak, E. K., Sweet, H. O., Prochazka, M., Parentis, M., Soble, R., Reddington, M., Cairo, A. & Swank, R. T. (1988). Cocoa: a new mouse model for platelet storage pool deficiency. British Journal of Hematology 69, 371378.CrossRefGoogle ScholarPubMed
Novak, E. K., McGarry, M. P. & Swank, R. T. (1985). Correction of symptoms of platelet storage pool deficiency in animal models for Chediak–Higashi Syndrome. Blood 66, 11961201.Google ScholarPubMed
Novak, E. K., Hui, S.-W. & Swank, R. T. (1984). Platelet storage pool deficiency in mouse pigment mutations associated with seven distinct genetic loci. Blood 63, 536544.Google ScholarPubMed
Novak, E. K., Hui, S.-W. & Swank, R. T. (1981). The mouse pale ear mutant as a possible animal model for human platelet storage pool deficiency. Blood 57, 3843.Google ScholarPubMed
Novick, P., Field, C. & Schekman, R. (1980). Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205215.CrossRefGoogle ScholarPubMed
Prieur, D. J. & Meyers, K. M. (1981). Evaluation of the platelet storage pool deficiency in a feline counterpart of the Chediak–Higashi Syndrome. American Journal of Hematology 11, 241253.Google Scholar
Rao, A. K. & Holmsen, H. (1986). Congenital disorders of platelet function. Seminars in Hematology 23, 102118.Google ScholarPubMed
Raymond, S. L. & Dodds, W. J. (1975). Characterization of the fawn-hooded rat as a model for hemostatic studies. Thrombosis et Diathesis Haemorrhagica 33, 361369.Google ScholarPubMed
Reddington, M., Novak, E. K., Hurley, E., Medda, C., McGarry, M. P. & Swank, R. T. (1987). Immature dense granules in platelets from mice with storage pool disease. Blood 69, 13001306.Google ScholarPubMed
Rendu, F., Maclouf, J., Launay, J.-M., Bornot, C., Levy-Toledano, S., Tanzer, J. & Caen, J. (1987). Hermansky–Pudlak platelets: further studies on release-reaction and protein phosphorylations. American Journal of Hematology 25, 165174.CrossRefGoogle ScholarPubMed
Rothman, J. H., Yamashiro, C. T., Kane, P. M. & Stevens, T. H. (1989). Protein targetting to the yeast vacuole. Trends in Biochemical Sciences 14, 347350.CrossRefGoogle Scholar
Skaer, R. J., Flemans, R. J. & McQuilkan, S. (1981). Mepacrine stains the dense bodies of human platelets and not platelet lysosomes. British Journal of Hematology 49, 435438.CrossRefGoogle Scholar
Svendsen, L., Brogli, M., Lindeberg, G. & Stoker, K. (1984). Differentiation of thrombin and factor Xa amidolytic activity in plasma by means of a synthetic proteinase inhibitor. Thrombosis Research 34, 457462.CrossRefGoogle Scholar
Takeuchi, K. H. & Swank, R. T. (1989). Inhibitors of elastase and cathepsin G in Chediak–Higashi (beige) neutrophils. Journal of Biological Chemistry 264, 74317436.Google ScholarPubMed
Weiss, H. J., Witte, L. D., Kaplan, K. L., Lages, B. A., Chernoff, A. N., Goodman, D. S. & Baumgartner, H. R. (1979). Heterogeneity in storage pool deficiency: Studies on granule-bound substances in 18 patients including variants deficient in α-granules, platelet factor 4, β-thromboglobulin and platelet-derived growth factor. Blood 54, 12961319.Google ScholarPubMed
Witkop, C. J., Quevedo, W. C., Fitzpatrick, T. B. & King, R. A. (1989). Albinism. In The Metabolic Basis of Inherited Disease, 6th edn (ed. Scriver, C. R., Beaudet, A. L., Sly, W. S. and Valle, D.), pp. 29052947. McGraw-Hill, New York.Google Scholar
Wolff, K. & Schreiner, E. (1970). Epidermal lysosomes. Archives of Dermatology 101, 276286.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 61 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Sandy: a new mouse model for platelet storage pool deficiency
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Sandy: a new mouse model for platelet storage pool deficiency
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Sandy: a new mouse model for platelet storage pool deficiency
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *