Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T18:24:33.978Z Has data issue: false hasContentIssue false

Recombination of recessive v+ transformants in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Allen S. Fox
Affiliation:
Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
Robert A. Kreber
Affiliation:
Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
Chih Ping Liu
Affiliation:
Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
Sei Byung Yoon
Affiliation:
Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recessive transformants (col) obtained from v (vermilion) embryos treated with v+ DNA are shown to map at 1−0·02, a position not distinguishable from that of su(s) (suppressor-of-sable) and in agreement with observations indicating phenotypic allelism of col with su(s) mutants. Recombination in the ycolgt segment of the X chromosome, over a total map length of O·3 units, was studied among the progeny of colv1/y1gtE6cvv1f and y1colgtE6cvv1f/v1 females. The data from both crosses exhibit the following features: (1) recovery of reciprocal recombinants between y1 and col; (2) recovery of reciprocal recombinants between col and gtE6 and (3) striking negative interference in the ycolgt segment. These results allow three alternative interpretations: (1) that recombination in the ycolgt segment results from conventional crossing-over, with high coincidence of crossovers in the two subsegments; (2) that it results from symmetrical gene conversion at the col site (col to col+, and col+ to col), which may be accompanied by single cross-overs in either of the adjacent regions; (3) that col behaves like a transposable element, formally symbolized su(s)+·col, and that recombination in su(s)+·col/su(s)+ (i.e. col/col+) heterozygotes results from transposition of the col element from homolog to homolog, accompanied sometimes by crossing-over, either in the ycol subsegment or in the col-gt subsegment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

References

REFERENCES

Baglioni, C. (1960). Genetic control of tryptophan pyrrolase in Drosophila melanogaster and Drosophila virilis. Heredity 15, 8796.CrossRefGoogle Scholar
Ballantyne, G. H. & Chovnick, A. (1971). Gene conversion in higher organisms: Non-reciprocal recombination events at the rosy cistron in Drosophila melanogaster. Genetical Research 17, 139149.CrossRefGoogle ScholarPubMed
Bridges, C. B. & Gabritschevsky, E. (1928). The giant mutation in Drosophila melanogaster. I. The heredity of giant. Zeitschrift für Induktive Abstatnmungs- und Vererbungslehre 49, 231247.Google Scholar
Fincham, J. R. S. & Sastry, G. R. K. (1974). Controlling elements in maize. Annual Review of Genetics 8, 1550.CrossRefGoogle ScholarPubMed
Fogel, S. & Hurst, D. D. (1967). Meiotic gene conversion in yeast tetrads and the theory of recombination. Genetics 57, 455481.CrossRefGoogle ScholarPubMed
Fox, A. S. (1976). Gene transfer in Drosophila melanogaster. In Molecular Genetic Modification of Eucaryotes (ed. Rubinstein, I.). New York: Academic Press. (In the Press.)Google Scholar
Fox, A. S., Parzen, S. D., Salverson, H. & Yoon, S. B. (1975). Gene transfer in Drosophila melanogaster: Genetic transformations induced by the DNA of transformed stocks. Genetical Research 26, 137147.CrossRefGoogle ScholarPubMed
Fox, A. S. & Valencia, J. I. (1975). Gene transfer in Drosophila melanogaster: Cytological alterations in the salivary chromosomes of transformed stocks. Chromosoma 51, 279289.CrossRefGoogle ScholarPubMed
Fox, A. S. & Yoon, S. B. (1970). DNA-induced transformation in Drosophila: Locus-specificity and the establishment of transformed stocks. Proceedings of the National Academy of Sciences (U.S.A.) 67, 16081615.CrossRefGoogle ScholarPubMed
Fox, A. S., Yoon, S. B., Duggleby, W. F. & Gelbart, S. M. (1971 a). Genetic transformation in Drosophila. In Informative Molecules in Biological Systems (ed. Ledoux, L. G. H.), pp. 313332. Amsterdam: North-Holland Publishing Company.Google Scholar
Fox, A. S., Yoon, S. B. & Gelbart, W. M. (1971 b). DNA-induced transformation in Drosophila. Genetic analysis of transformed stocks. Proceedings of the National Academy of Sciences (U.S.A.) 68, 342346.CrossRefGoogle ScholarPubMed
Greenblatt, I. M. (1968). The mechanism of modulator transposition in maize. Genetics 58, 585597.CrossRefGoogle ScholarPubMed
Greenblatt, I. M. & Brink, R. A. (1962). Twin mutations in medium variegated pericarp in maize. Genetics 47, 489501.CrossRefGoogle ScholarPubMed
Husrt, D. D., Fogel, S. & Mortimer, R. K. (1972). Conversion-associated recombination in yeast. Proceedings of the National Academy of Sciences (U.S.A.) 69, 101105.Google Scholar
Judd, B. H., Shen, M. W. & Kaufman, T. C. (1972). The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics 71, 139156.CrossRefGoogle ScholarPubMed
Kaufman, S. (1962). Studies on tryptophan pyrrolase in Drosophila melanogaster. Genetics 47, 807817.CrossRefGoogle ScholarPubMed
Kaufman, T. C. (1973). Further characterization of the giant locus of Drosophila melanogaster. Genetics 74, supplement: s 133.Google Scholar
Lefevre, G. Jr. (1969). The eccentricity of vermilion deficiences in Drosophila melanogaster. Genetics 63, 589600.CrossRefGoogle ScholarPubMed
Lefevre, G. Jr. (1974). The relationship between genes and polytene chromosome bands. Annual Review of Genetics 8, 5162.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institution of Washington Publication, no. 627. Washington, D.C.Google Scholar
Marzluf, G. A. (1965). Enzymatic studies with the suppressor of vermilion of Drosophila melanogaster. Genetics 52, 503512.CrossRefGoogle ScholarPubMed
Stadler, D. R. & Towe, A. M. (1963). Recombination of allelic cysteine mutants in Neurospora. Genetics 48, 13231344.CrossRefGoogle ScholarPubMed
Stern, C. (1937). Linkage data. Drosophila Information Service 7, 21.Google Scholar
Tartof, K. D. (1969). Interacting gene systems. I. The regulation of tryptophan pyrrolase by the vermilion-suppressor of vermilion in Drosophila. Genetics 62, 781795.CrossRefGoogle ScholarPubMed
Tobler, J. E. (1975). Dosage compensation and ontogenic expression of suppressed and transformed vermilion flies in Drosophila. Biochemical Genetics 13, 2943.CrossRefGoogle ScholarPubMed
Twardzik, D. R., Grell, E. H. & Jacobson, K. B. (1971). Mechanism of suppression in Drosophila: A change in tyrosine transfer RNA. Journal of Molecular Biology 57, 231246.CrossRefGoogle ScholarPubMed
White, B. H., Lener, G. M., Holden, J. & Suzuki, D. T. (1973). Activity of a tRNA modifying enzyme during the development of Drosophila and its relationship to the su(s) locus. Journal of Molecular Biology 74, 636651.CrossRefGoogle Scholar