Skip to main content Accessibility help
×
Home

Information:

  • Access
  • Cited by 94

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Rapid fixation of deleterious alleles can be caused by Muller's ratchet
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Rapid fixation of deleterious alleles can be caused by Muller's ratchet
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Rapid fixation of deleterious alleles can be caused by Muller's ratchet
        Available formats
        ×
Export citation

Abstract

Theoretical arguments are presented which suggest that each advance of Muller's ratchet in a haploid asexual population causes the fixation of a deleterious mutation at a single locus. A similar process operates in a diploid, fully asexual population under a wide range of parameter values, with respect to fixation within one of the two haploid genomes. Fixations of deleterious mutations in asexual species can thus be greatly accelerated in comparison with a freely recombining genome, if the ratchet is operating. In a diploid with segregation of a single chromosome, but no crossing over within the chromosome, the advance of the ratchet can be decoupled from fixation if mutations are sufficiently close to recessivity. A new analytical approximation for the rate of advance of the ratchet is proposed. Simulation results are presented that validate the assertions about fixation. The simulations show that none of the analytical approximations for the rate of advance of the ratchet are satisfactory when population size is large. The relevance of these results for evolutionary processes such as Y chromosome degeneration is discussed.