Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-28T20:53:36.316Z Has data issue: false hasContentIssue false

R68.45, a plasmid with chromosome mobilizing ability (Cma) carries a tandem duplication

Published online by Cambridge University Press:  14 April 2009

G. Rieβ
Affiliation:
Lehrstuhl für Genetik der Universität Bielefeld, Fakultät für Biologie, Postfach 8640, 4800 Bielefeld 1, Federal Republic of Germany
B. W. Holloway
Affiliation:
Department of Genetics, Monash University, Wellington Road, Clayton, Victoria, 3168Australia
A. Pühler
Affiliation:
Lehrstuhl für Genetik der Universität Bielefeld, Fakultät für Biologie, Postfach 8640, 4800 Bielefeld 1, Federal Republic of Germany

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Plasmids R68 and R68.45 were transferred from Pseudomonas aeruginosa to Escherichia coli by conjugation. R68.45 was able to mobilize the E. coli chromosome from different origins at a frequency of about lO−6/donor cell. With R68, no transfer of chromosomal genes could be detected. Plasmid R68.45 differs from its parent R68 only by an additional DNA segment, 2120 bp long, located close to the kanamycin resistance gene. By restriction enzyme analysis it was shown that the additional DNA segment of R68.45 is a duplication of a pre-existing DNA region of R68. The duplicated region is characterized by the following sequence of restriction sites: A–310 bp–SmaI–70 bp–PstI–795 bp–PstI–15 bp–KpnI–540 bp–HpaI–370 bp–B.

The endpoints A and B of the duplicated region were determined by a heteroduplex experiment between HindIII linearized molecules of R68 and R68.45. It is proposed that this duplication found in R68.45 is responsible for its chromosome mobilizing ability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

References

REFERENCES

Bachman, B. J., Low, K. B. & Taylor, A. L. (1976). Recalibrated linkage map of Escherichia coli K 12. Bacteriological Reviews 40, 116167.CrossRefGoogle Scholar
Barth, P. T. & Grinter, N. J. (1977). Map of plasmid RP4 derived by insertion of transposon C. Journal of Molecular Biology 113, 455474.Google Scholar
Bazaral, M. & Helenski, D. R. (1968). Circular DNA forms of colicinogenic factors E1, E2, and E3 from Escherichia coli. Journal of Molecular Biology 36, 185194.CrossRefGoogle ScholarPubMed
Beringer, J. E., Hoggan, S. A. & Johnston, A. W. B. (1978). Linkage mapping in Rhizobium leguminosarum by means of R-plasmid mediated recombination. Journal of General Microbiology 104, 201207.CrossRefGoogle Scholar
Burkardt, H.-J., Mattes, R., Pühler, A. & Heumann, W. (1978). Electron microscopy and computerized evaluation of some partially denatured group P resistance plasmids. Journal of General Microbiology 105, 5162.Google Scholar
Burkardt, H.-J., Priefer, U., Pühler, A., Rieβ, G. & Spitzbarth, P. (1979 a). Naturally occurring insertion mutants of broad host range plasmids RP4 and R68. In Developments in Genetics: Plasmids of Medical, Environmental and Commercial Importance, vol. I (ed. Timmis, K. and A., Pühler), pp. 387398. Elsevier: North-Holland.Google Scholar
Burkardt, H.-J., Rieβ, G. & Pühler, A. (1979 b). Relationship of group P1 plasmids revealed by heteroduplex experiment0s: RP1, RP4, R68 and RK2 are identical. Journal of General Microbiology 114, 341348.Google Scholar
Cannon, F. C., Dixon, R. A., Postdate, J. R. & Primrose, S. B. (1974). Chromosomal integration of Klebsiella nitrogen fixation genes in Escherichia coli. Journal of General Microbiology 80, 227239.CrossRefGoogle ScholarPubMed
Casadesús, J. & Olivares, J. (1979). Rough and fine linkage mapping of the Rhizobium meliloti chromosome. Molecular and General Genetics 174, 203209.Google Scholar
Davis, B. D. & Minigioli, E. S. (1950). Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60, 17.CrossRefGoogle ScholarPubMed
DePicker, A., Van Montagu, A. & Schell, J. (1979). Physical map of RP4. In DNA, Insertion Elements, Plasmids and Episomes (ed. Bukhari, A. I., Shapiro, J. A. & Adhya, S. L.), pp. 678679. New York: Cold Spring Harbour Laboratory.Google Scholar
Grinsted, J., Bennett, P. M. & Richmond, M. H. (1977). A restriction enzyme map of R-plasmid RP1. Plasmid 1, 3437.CrossRefGoogle ScholarPubMed
Haas, D. & Holloway, B. W. (1976). R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Molecular and General Genetics 144, 243251.CrossRefGoogle ScholarPubMed
Hamada, S. E., Luckey, J. P. & Farrand, S. K. (1979). R-plasmid mediated chromosomal gene transfer in Agrobacterium tumefaciens. Journal of Bacteriology 139, 280286.CrossRefGoogle ScholarPubMed
Hershfield, V., Boyer, H. W., Yanofsky, C., Lovett, M. A. & Helinski, D. R. (1974). Plasmid ColE1 as a molecular vehicle for cloning and amplification of DNA. Proceedings of the National Academy of Science, U.S.A. 71, 3455.CrossRefGoogle ScholarPubMed
Holloway, B. W. (1979). Plasmids that mobilize bacterial chromosome. Plasmid 2, 119.Google Scholar
Holloway, B. W., Haas, D. & Morgan, A. F. (1979 a). Interactions between R plasmids and the bacterial chromosome. In Microbial drug resistance, vol. II (ed. Mitsuhashi, S.) pp. 139150. Tokyo: Japanese Scientific Societies Press.Google Scholar
Holloway, B. W., Krishnapillai, V. & Morgan, A. F. (1979 b). Chromosomal genetics in Pseudomonas. Microbiological Reviews 43, 73102.CrossRefGoogle ScholarPubMed
Ifft, J. B., Volt, D. H. & Vinograd, J. (1961). The determination of density distribution and density gradients in binary solution at equilibrium in the ultracentrifuge. Journal of Physical Chemistry 65, 11381145.Google Scholar
Isaac, J. H. & Holloway, B. W. (1968). Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. Journal of Bacteriology 96, 17321741.CrossRefGoogle ScholarPubMed
Jacob, A. E., Cresswell, J. M. & Hedges, R. W. (1977). Molecular characterization of the P group plasmid R68 and variants with enhanced chromosome mobilizing ability. Federation of European Microbiological Societies Letters 1, 7174.Google Scholar
Kondorosi, A., Kiss, G. B., Forrai, T., Vincze, E. & Banfalvi, Z. (1977). Circular linkage map of Rhizobium meliloti chromosome. Nature 268, 525527.CrossRefGoogle Scholar
Meyer, R., Figurski, D. & Helinski, D. R. (1977). Restriction enzyme map of RK2. In DNA, Insertion Elements, Plasmids and Episomes (ed. Bukhari, A. I., Shapiro, J. A. and Adhya, S. L.), p. 680. New York: Cold Spring Harbour Laboratory.Google Scholar
Miller, J. H. (1972). Experiments in Molecular Genetics. New York: Cold Spring Harbour Laboratory.Google Scholar
Novick, R. P., Clowes, R. C., Cohen, S. N., Curtis, R. III, Datta, N. & Falkow, S. (1976). Uniform nomenclature for bacterial plasmids: a proposal. Bacteriological Reviews 40, 168189.Google Scholar
Priefer, U., Spitzbarth, P., Burkardt, H.-J. & Pühler, A. (1980). RP4 mutants generated by insertion element ISR1. In Proceedings of the Fourth International Symposium on Antibiotic Resistance. Avicenum: Springer Verlag. (In the press.)Google Scholar
Radloff, R., Bauer, W. & Vinograd, J. (1967). A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA. The closed circular DNA in HeLa cells. Proceedings of the National Academy of Science, U.S.A. 57, 15141521.CrossRefGoogle ScholarPubMed
Schöffl, F. & Pühler, A. (1979). Intramolecular amplification of the tetracycline resistance determinant of transposon Tn1771 in E.coli. Genetical Research 33, 253260.CrossRefGoogle Scholar
Sistrom, W. R. (1977). Transfer of chromosomal genes mediated by plasmid R68.45 in Rhodopseudomonas sphaeroides. Journal of Bacteriology 131, 526532.Google Scholar
Summers, A. O. & Jacoby, G. A. (1977). Plasmid-determined resistance to tellurium compounds. Journal of Bacteriology 129, 276281.CrossRefGoogle ScholarPubMed
Watson, J. M. & Holloway, B. W. (1978). Chromosome mapping in Pseudomonas aeruginosa strain PAT. Journal of Bacteriology 133, 11131125.Google Scholar
Yagi, Y. & Clewell, D. B. (1977). Identification and characterization of a small sequence located at two sites on the amplifiable tetracycline resistance plasmid pAMα1 in Streptococcus faecalis. Journal of Bacteriology 129, 400406.CrossRefGoogle ScholarPubMed