Skip to main content Accessibility help
×
Home

Quantitative trait locus mapping of gravitaxis behaviour in Drosophila melanogaster

  • CHRISTIE E. DESROCHES (a1), MACARENA BUSTO (a1), CRAIG A. L. RIEDL (a1), TRUDY F. C. MACKAY (a2) and MARLA B. SOKOLOWSKI (a1)...

Summary

Drosophila melanogaster, like other organisms, move and orient themselves in response to the earth's gravitational force. The ability to sense and respond to gravity is essential for an organism to navigate and thrive in its environment. The genes underlying this behaviour in Drosophila remain elusive. Using 88 recombinant inbred lines, we have identified four quantitative trait loci (QTLs) that contribute to adult gravitaxis (geotaxis) behaviour in Drosophila. Candidate genes of interest were selected from the QTLs of highest significance based on their function in chordotonal organ formation. Quantitative complementation tests with these candidate genes revealed a role for skittles in adult gravitaxis behaviour in D. melanogaster.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Quantitative trait locus mapping of gravitaxis behaviour in Drosophila melanogaster
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Quantitative trait locus mapping of gravitaxis behaviour in Drosophila melanogaster
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Quantitative trait locus mapping of gravitaxis behaviour in Drosophila melanogaster
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. 3359 Mississauga Rd. N., Mississauga, ON, Canada L5L1C6. Tel: 905-569-4709. Fax: 905-828-3792. e-mail: marla.sokolowski@utoronto.ca

References

Hide All
Anholt, R. R. & Mackay, T. F. (2004). Quantitative genetic analyses of complex behaviours in Drosophila. Nature Reviews Genetics 5, 838849.
Armstrong, J. D., Texada, M. J., Munjaal, R., Baker, D. A. & Beckingham, K. M. (2006). Gravitaxis in Drosophila melanogaster: a forward genetic screen. Genes, Brain and Behavior 5, 222239.
Bailey, J. S., Grabowski-Boase, L., Steffy, B. M., Wiltshire, T., Churchill, G. A. & Tarantino, L. M. (2008). Identification of quantitative trait loci for locomotor activation and anxiety using closely related inbred strains. Genes, Brain and Behavior 7, 761769.
Baker, D. A., Beckingham, K. M. & Armstrong, J. D. (2007). Functional dissection of the neural substrates for gravitaxis maze behaviour in Drosophila melanogaster. Journal of Comparative Neurology 501, 756764.
Basten, C. J., Weir, B. S. & Zeng, Z. B. (1994). Zmap – a QTL cartographer. In Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software, (ed. Smith, C., Gavora, J. S., Benkel, B., Chesnais, J., Fairfull, W., Gibson, J. P., Kennedy, B. W. & Burnside), E. B., pp. 6566. Organizing Committee, 5th World Congress on Genetics Applied to Livestock Production, Guelph, ON, Canada.
Basten, C. J., Weir, B. S. & Zeng, Z. B. (2003). QTL Cartographer, Version 1.17 Raleigh, NC, USA: Department of Statistics, North Carolina State University.
Beckingham, K. M., Texada, M. J., Baker, D. A., Munjaal, R. & Armstrong, J. D. (2005). Genetics of graviperception in animals. Advances in Genetics 55, 105145.
Bourguet, D., Gair, J., Mattice, M. & Whitlock, M. C. (2003). Genetic recombination and adaptation to fluctuating environments: selection for geotaxis in Drosophila melanogaster. Heredity 91, 7884.
Buescher, M., Yeo, S. L., Udolph, G., Zavortnik, M., Yang, X., Tear, G. & Chia, W. (1998). Binary sibling neuronal cell fate decisions in the Drosophila embryonic central nervous system are nonstochastic and require inscuteable-mediated asymmetry of ganglion mother cells. Genes and Development 12, 18581870.
Burchard, S., Paululat, A., Hinz, U. & Renkawitz-Pohl, R. (1995). The mutant not enough muscles (nem) reveals reduction of the Drosophila embryonic muscle pattern. Journal of Cell Science 108, 14431454.
Churchill, D. A. & Doerge, R. W. (1994). Empirical threshold values for quantitative trait mapping. Genetics 138, 963971.
Doerge, R. W. & Churchill, D. A. (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142, 285294.
Eberl, D. F. (1999). Feeling the vibes: chordotonal mechanisms in insect hearing. Current Opinion in Neurobiology 9, 389393.
Eberl, D. F. & Boekhoff-Falk, G. (2007). Development of Johnston's organ in Drosophila. International Journal of Developmental Biology 51, 679687.
Erlenmeyer-Kimling, L. & Hirsch, J. (1961). Measurement of the relations between chromosomes and behavior. Science 13, 10681069.
Gurganus, M. C., Nuzhdin, S. V., Leips, J. W. & Mackay, T. F. (1999). High-resolution mapping of quantitative trait loci for sternopleural bristle number in Drosophila melanogaster. Genetics 152, 15851604.
Hassan, B. A., Prokopenko, S. N., Breuer, S., Zhang, B., Paululat, A. & Bellen, H. J. (1998). skittles, a Drosophila phosphatidylinositol 4-phosphate 5-kinase, is required for cell viability, germline development and bristle morphology, but not for neurotransmitter release. Genetics 150, 15271537.
Hirsch, J. & Erlenmeyer-Kimling, L. (1962). Studies in experimental behavior genetics: IV. Chromosome analyses for geotaxis. Journal of Comparative and Physiological Psychology 55, 732739.
Horn, E. (1985). Gravity. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 6, (ed. Kerkut, G. A. & Gilbert, L. I.), pp. 557576. New York: Pergamon Press.
Jarman, A. P. (2002). Studies of mechanosensation using the fly. Human Molecular Genetics 11, 12151218.
Jarman, A. P., Sun, Y., Jan, L. Y. & Jan, Y. N. (1995). Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 121, 20192030.
Jordan, K. W., Morgan, T. J. & Mackay, T. F. (2006). Quantitative trait loci for locomotor behavior in Drosophila melanogaster. Genetics 174, 271284.
Kamikouchi, A., Inagaki, H. K., Effertz, T., Hendrich, O., Fiala, A., Göpfert, M. C. & Ito, K. (2009). The neural basis of Drosophila gravity-sensing and hearing. Nature 458, 165171.
Kania, A., Salzberg, A., Bhat, M., D'Evelyn, D., He, Y., Kiss, I. & Bellen, H. J. (1995). P-element mutations affecting embryonic peripheral nervous system development in Drosophila melanogaster. Genetics 139, 16631678.
Kernan, M. J. (2007). Mechanotransduction and auditory transduction in Drosophila. Pflügers Archiv: European Journal of Physiology 454, 703720.
Kessler, S., Rockwell, R. F. & Levine, L. (1982). Effects of selection for decreased movement through the Drosophila geotaxis maze. The Journal of Heredity 73, 381382.
Knirr, S., Breuer, S., Paululat, A. & Renkawitz-Pohl, R. (1997). Somatic mesoderm differentiation and the development of a subset of pericardial cells depend on the not enough muscles (nem) locus, which contains the inscuteable gene and the intron located gene, skittles. Mechanisms of Development 67, 6981.
Kraut, R. & Campos-Ortega, J. A. (1996). inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeleton adaptor protein. Developmental Biology 174, 6581.
Mackay, T. F. (2001). The genetic architecture of quantitative traits. Annual Review of Genetics 35, 303339.
Mackay, T. F. (2004). The genetic architecture of quantitative traits: lessons from Drosophila. Current Opinion in Genetics and Development 14, 253257.
McGuire, T. R. (1992). A biometrical genetic approach to chromosome analysis in Drosophila: detection of epistatic interactions in geotaxis. Behavior Genetics 22, 453467.
McMillan, P. A. & McGuire, T. R. (1992). The homeotic gene spineless-aristapedia affects geotaxis in Drosophila melanogaster. Behavior Genetics 22, 557573.
Mertens, I., Vandingenen, A., Johnson, E. C., Shafer, O. T., Li, W., Trigg, J. S., De Loof, A., Schoofs, L. & Taghert, P. H. (2005). PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron 48, 213219.
Moehring, A. J. & Mackay, T. F. (2004). The quantitative genetic basis of male mating behavior in Drosophila melanogaster. Genetics 167, 12491263.
Nitabach, M. N. & Taghert, P. H. (2008). Organization of the Drosophila circadian control circuit. Current Biology 18, R84R93.
Nuzhdin, S. V., Pasyukova, E. G., Zeng, Z. B. & Mackay, T. F. (1997). Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 94, 97349739.
Perera, I. Y., Heilmann, I. & Boss, W. F. (1999). Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proceedings of the National Academy of Sciences, USA 96, 58385843.
Riedl, C. A., Riedl, M., Mackay, T. F. & Sokolowski, M. B. (2007). Genetic and behavioral analysis of natural variation in Drosophila melanogaster pupation position. Fly 1, 2332.
Stoltenberg, S. F. & Hirsch, J. (1996). A gene correlate of geotaxis near Adh (2–50·1) in Drosophila melanogaster. Journal of Comparative Psychology 110, 252259.
Stölting, H., Stumpner, A. & Lakes-Harlan, R. (2007). Morphology and physiology of the prosternal chordotonal organ of the sarcophagid fly Sarcophaga bullata (Parker). Journal of Insect Physiology 53, 444454.
Strauss, R. & Heisenberg, M. (1993). A higher control center of locomotor behavior in the Drosophila brain. Journal of Neuroscience 13, 18521861.
Toma, D. P., White, K. P., Hirsch, J. & Greenspan, R. J. (2002). Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nature Genetics 31, 349353.
Viera, C., Pasyukova, E. G., Zeng, Z. B., Hackett, J. B., Lyman, R. F. & Mackay, T. F. (2000). Genotype–environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics 154, 213227.
Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics 136, 14571468.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed