Skip to main content Accessibility help
×
Home

A modelling framework for the analysis of artificial-selection time series

  • ARNAUD LE ROUZIC (a1) (a2), DAVID HOULE (a1) (a3) and THOMAS F. HANSEN (a1)

Summary

Artificial-selection experiments constitute an important source of empirical information for breeders, geneticists and evolutionary biologists. Selected characters can generally be shifted far from their initial state, sometimes beyond what is usually considered as typical inter-specific divergence. A careful analysis of the data collected during such experiments may thus reveal the dynamical properties of the genetic architecture that underlies the trait under selection. Here, we propose a statistical framework describing the dynamics of selection-response time series. We highlight how both phenomenological models (which do not make assumptions on the nature of genetic phenomena) and mechanistic models (explaining the temporal trends in terms of e.g. mutations, epistasis or canalization) can be used to understand and interpret artificial-selection data. The practical use of the models and their implementation in a software package are demonstrated through the analysis of a selection experiment on the shape of the wing in Drosophila melanogaster.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A modelling framework for the analysis of artificial-selection time series
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A modelling framework for the analysis of artificial-selection time series
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A modelling framework for the analysis of artificial-selection time series
      Available formats
      ×

Copyright

Corresponding author

*Correspondence author: e-mail: lerouzic@legs.cnrs-gif.fr

References

Hide All
Akaike, H. (1973). Proceedings of the International Symp on Information theory, Information theory as an extension of the maximum likelihood principle, pp 267281. Akademiai Kiado, Budapest.
Álvarez-Castro, J. M., Kopp, M. & Hermisson, J. (2009). Effects of epistasis and the evolution of genetic architecture: exact results for a 2-locus model. Theoretical Population Biology 75, 109122.
Anderson, D., Burnham, K. & Thompson, W. (2000). Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management 64, 912923.
Arnold, S. J., Burger, R., Hohenlohe, P. A., Ajie, B. C. & Jones, A. G. (2008). Understanding the evolution and stability of the g-matrix. Evolution 62, 24512461.
Arnold, S. J., Pfrender, M. E. & Jones, A. G. (2001). The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113, 9–32.
Barton, N. H. & Keightley, P. D. (2002). Understanding quantitative genetic variation. Nature Reviews Genetics 3, 1121.
Blows, M. W. (2007). A tale of two matrices: multivariate approaches in evolutionary biology. Journal of Evolutionary Biology 20, 18.
Bulmer, M. G. (1971). The effect of selection on genetic variability. The American Naturalist 105, 201211.
Bulmer, M. G. (1980). The Mathematical Theory of Quantitative Genetics. Claredon Press, Oxford.
Bürger, R. & Ewens, W. J. (1995). Fixation probabilities of additive alleles in diploid populations. Journal of Mathematical Biology 33, 557575.
Burnham, K. & Anderson, D. (2002). Model Selection and Multi-Model Inference. Springer-Verlag, New York, NY.
Carlborg, Ö. & Haley, C. S. (2004). Epistasis: too often neglected in complex trait studies? Nature Reviews Genetics 5, 618625.
Carter, A. J. R., Hermisson, J. & Hansen, T. F. (2005). The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theoretical Population Biology 68, 179196.
Chevalet, M. (1994). An approximate theory of selection assuming a finite number of quantitative trait loci. Genetics Selection Evolution 26, 379400.
Cockerham, C. C. (1954). An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics 39, 859882.
Colosimo, P. F., Peichel, C. L., Nereng, K., Blackman, B. K., Shapiro, M. D., Schluter, D. & Kingsley, D. M. (2004). The genetic architecture of parallel armor plate reduction in threespine sticklebacks. PLoS Biology 2, E109.
Dempfle, L. (1975). A note on increasing the limit of selection through selection within families. Genetics Research 24, 127135.
Eisen, E. J. (1972). Long-term selection response for 12-day litter weight in mice. Genetics 72, 129142.
Engen, S., Lande, R. & Sæther, B. E. (2009). Fixation probability of beneficial mutations in a fluctuating population. Genetics Research 91, 7382.
Falconer, D. S. (1992). Early selection experiments. Annual Review of Genetics 26, 114.
Frankham, R. (1995). Effective population-size/adult population-size ratios in wildlife – a review. Genetical Research 66, 95107.
Gianola, D. & Fernando, R. (1986). Bayesian methods in animal breeding theory. Journal of Animal Science 63, 217244.
Gingerich, P. D. (2000). Arithmetic or geometric normality of biological variation: an empirical test of theory. Journal of Theoretical Biology 204, 201221.
Gingerich, P. D. (2001). Rates of evolution on the time scale of the evolutionary process. Genetica 112–113, 127144.
Gjuvsland, A. B., Hayes, B. J., Omholt, S. W. & Carlborg, O. (2007). Statistical epistasis is a generic feature of gene regulatory networks. Genetics 175, 411420.
Gudbjartsson, D. F., Walters, G. B., Thorleifsson, G., Stefansson, H., Halldorsson, B. V., Zusmanovich, P., Sulem, P., Thorlacius, S., Gylfason, A., Steinberg, S., Helgadottir, A., Ingason, A., Steinthorsdottir, V., Olafsdottir, E. J., Olafsdottir, G. H., Jonsson, T., Borch-Johnsen, K., Hansen, T., Andersen, G., Jorgensen, T., Pedersen, O., Aben, K. K., Witjes, J. A., Swinkels, D. W., den Heijer, M., Franke, B., Verbeek, A. L., Becker, D. M., Yanek, L. R., Becker, L. C., Tryggvadottir, L., Rafnar, T., Gulcher, J., Kiemeney, L. A., Kong, A., Thorsteinsdottir, U. & Stefansson, K. (2008). Many sequence variants affecting diversity of adult human height. Nature Genetics 40, 609615.
Hallander, J. & Waldmann, P. (2007). The effect of non-additive genetic interactions on selection in multi-locus genetic models. Heredity 98, 349359.
Hand, D. (2004). Measurement Theory and Practice: The World Through Quantification. Hodder Arnold, London.
Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69, 8394.
Hansen, T. F. (2006). The evolution of genetic architecture. Annual Review of Ecology Evolution and Systematics 37, 123157.
Hansen, T. F., Alvarez-Castro, J. M., Carter, A. J. R., Hermisson, J. & Wagner, G. P. (2006). Evolution of genetic architecture under directional selection. Evolution 60, 15231536.
Hansen, T. F., Armbruster, W. S., Carlson, M. L. & Pélabon, C. (2003 a). Evolvability and genetic constraint in Dalechampia blossoms: genetic correlations and conditional evolvability. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 296, 2339.
Hansen, T. F. & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology 21, 12011219.
Hansen, T. F., Pélabon, C., Armbruster, W. S. & Carlson, M. L. (2003 b). Evolvability and genetic constraint in Dalechampia blossoms: components of variance and measures of evolvability. Journal of Evolutionary Biology 16, 754766.
Hansen, T. F. & Wagner, G. P. (2001). Modeling genetic architecture: A multilinear theory of gene interaction. Theoretical Population Biology 59, 6186.
Hermisson, J., Hansen, T. F. & Wagner, G. P. (2003). Epistasis in polygenic traits and the evolution of genetic architecture under stabilizing selection. The American Naturalist 161, 708734.
Hermisson, J. & Pennings, P. (2005). Soft sweeps: Molecular population genetics of adaptation from standing genetic variation. Genetics 169, 23352352.
Hill, W. G. (1982 a). Predictions of response to artificial selection from new mutations. Genetics Research 40, 255278.
Hill, W. G. (1982 b). Rates of change in quantitative traits from fixation of new mutations. Proceedings of the National Academy of Sciences of the United States of America 79, 142145.
Hill, W. G. & Caballero, A. (1992). Artificial selection experiments. Annual Review of Ecology and Systematics 23, 287310.
Hohenlohe, P. A. & Arnold, S. J. (2008). MIPoD: a hypothesis-testing framework for microevolutionary inference from patterns of divergence. The American Naturalist 171, 366385.
Holt, M., Meuwissen, T. & Vangen, O. (2005). Long-term responses, changes in genetic variances and inbreeding depression from 122 generations of selection on increased litter size in mice. Journal of Animal Breeding and Genetics 122, 199209.
Hospital, F. & Chevalet, C. (1996). Interactions of selection, linkage and drift in the dynamics of polygenic characters. Genetics Research 67, 7787.
Houle, D. (1992). Comparing evolvability and variability of quantitative traits. Genetics 130, 195204.
Houle, D. (1998). How should we explain variation in the genetic variance of traits? Genetica 102–103, 241253.
Houle, D., Mezey, J., Galpern, P. & Carter, A. (2003). Automated measurement of Drosophila wings. BMC Evolutionary Biology 3, 25.
Houle, D., Morikawa, B. & Lynch, M. (1996). Comparing mutational variabilities. Genetics 143, 14671483.
Houle, D., Pelabon, C., Wagner, G. & Hansen, T. F. (2011). Measurement and meaning in biology. The Quarterly Review of Biology 86, 132.
Keightley, P. D. (1998). Genetic basis of response to 50 generations of selection on body weight in inbred mice. Genetics 148, 19311939.
Keightley, P. D. (2004). Mutational variation and long-term selection reponse. Plant Breeding Reviews 24, 227247.
Keightley, P. D. & Hill, W. G. (1987). Directional selection and variation in finite populations. Genetics 117, 573582.
Kempthorne, O. (1954). The correlation between relatives in a random mating population. Proceedings of the Royal Society of London, Series B 143, 102113.
Lande, R. (1975). The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genetics Research 26, 221235.
Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33, 402416.
Lande, R. (1983). The response to selection on major and minor mutations affecting a metrical trait. Heredity 50, 4765.
Lande, R. & Arnold, S. (1983). The measument of selection on correlated characters. Evolution 37, 12101226.
Le Rouzic, A. & Álvarez-Castro, J. M. (2008). Estimation of genetic effects and genotype-phenotype maps. Evolutionary Bioinformatics 4, 225235.
Le Rouzic, A., Álvarez-Castro, J. M. & Carlborg, O. (2008). Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits. Genetics 179, 15911599.
Le Rouzic, A., Siegel, P. B. & Carlborg, O. (2007). Phenotypic evolution from genetic polymorphisms in a radial network architecture. BMC Biology 5, 50.
Le Rouzic, A., Skaug, H. J. & Hansen, T. F. (2010). Estimating genetic architectures from artificial-selection responses: A random-effect framework. Theoretical Population Biology 77, 119130.
Lynch, M. (1988). The rate of polygenic mutation. Genetics Research 51, 137148.
Lynch, M., Blanchard, J., Houle, D., Kibota, T., Schultz, S., Vassilieva, L. & Willis, J. (1999). Spontaneous deleterious mutation. Evolution 53, 645663.
Lynch, M. & Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sinauer Assoc., Sunderland, MA.
Mackay, T. F. (2004). The genetic architecture of quantitative traits: lessons from Drosophila. Current Opinion in Genetics and Development 14, 253257.
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., Boehnke, M., Clark, A. G., Eichler, E. E., Gibson, G., Haines, J. L., Mackay, T. F., McCarroll, S. A. & Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature 461, 747753.
Martinez, V., Bunger, L. & Hill, W. G. (2000). Analysis of response to 20 generations of selection for body composition in mice: fit to infinitesimal model assumptions. Genetics Selection Evolution 32, 321.
McGuigan, K. (2006). Studying phenotypic evolution using multivariate quantitative genetics. Molecular Ecology 15, 883896.
Meyer, K. & Hill, W. G. (1991). Mixed model analysis of a selection experiment for food intake in mice. Genetics Research 57, 7181.
O'Hara, R. B., Cano, J. M., Ovaskainen, O., Teplitsky, C. & Alho, J. S. (2008). Bayesian approaches in evolutionary quantitative genetics. Journal of Evolutionary Biology 21, 949957.
Omholt, S., Plahte, E., Oyehaug, L. & Xiang, K. (2000). Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics 155, 969980.
Otto, S. P. & Whitlock, M. C. (1997). The probability of fixation in populations of changing size. Genetics 146, 723733.
Pavlicev, M., Le Rouzic, A., Cheverud, J. M., Wagner, G. P. & Hansen, T. F. (2010). Directionality and scale of epistasis a murine intercross population. Genetics 185, 14891505.
Pélabon, C., Hansen, T. F., Carter, A. J. & Houle, D. (2006). Response of fluctuating and directional asymmetry to selection on wing shape in Drosophila melanogaster. Journal of Evolutionary Biology 19, 764776.
Phillips, P. (1998). The language of gene interaction. Genetics 149, 11671171.
Pong-Wong, R., Haley, C. S. & Woolliams, J. A. (1999). Behaviour of the additive finite locus model. Genetics Selection Evolution 31, 193211.
Powers, L. (1950). Determining scales and the use of transformations in studies on weight perlocule of tomato fruit. Biometrics 6, 145163.
R Development Core Team (2007). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
Robertson, A. (1960). A theory of limits in artificial selection. Proceedings of the Royal Society of London, B 153, 234249.
Skaug, H. J. & Fournier, D. (2006). Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models. Computational Statistics and Data Analysis 56, 699709.
Sorensen, D., Fernando, R. & Gianola, D. (2001). Inferring the trajectory of genetic variance in the course of artificial selection. Genetics Research 77, 8394.
Turelli, M. (1988). Population genetics models for polygenic variation and evolution. In Proceedings of the Second International Conference on Quantitative Genetics, Raleigh, North Carolina (Weir, B. S. et al. ). Sinauer Associates, Sunderland, MA.
Wagner, G. P. (2010). The measurement theory of fitness. Evolution 64, 13581376.
Weber, K. E. & Diggins, L. T. (1990). Increased selection response in larger populations. II. Selection for ethanol vapor resistance in Drosophila melanogaster at two population sizes. Genetics 125, 585597.
Wilson, A. J. (2008). Why h 2 does not always equal V A/V P? Journal of Evolutionary Biology 21, 647650.
Zeng, Z. B., Tachida, H. & Cockerham, C. C. (1989). Effects of mutation on selection limits in finite populations with multiple alleles. Genetics 122, 977984.
Zhang, X. S. & Hill, W. G. (2002). Joint effects of pleiotropic selection and stabilizing selection on the maintenance of quantitative genetic variation at mutation-selection balance. Genetics 162, 459471.
Zhang, X. S. & Hill, W. G. (2005). Evolution of the environmental component of the phenotypic variance: stabilizing selection in changing environments and the cost of homogeneity. Evolution 59, 12371244.
Type Description Title
PDF
Supplementary materials

Rouzic supplementary materials
Rouzic supplementary materials

 PDF (358 KB)
358 KB

A modelling framework for the analysis of artificial-selection time series

  • ARNAUD LE ROUZIC (a1) (a2), DAVID HOULE (a1) (a3) and THOMAS F. HANSEN (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed