Skip to main content Accessibility help
×
Home

The mode of reproduction in natural populations of ascomycetous fungus, Emericella nidulans, from Israel

  • E. HOSID (a1), I. GRISHKAN (a1), E. YUSIM (a1), Z. FRENKEL (a1), S. P. WASSER (a1), E. NEVO (a1) and A. KOROL (a1)...

Summary

The mode of reproduction of the soil ascomycetous fungus Emericella nidulans of Israeli populations was studied using 15 microsatellite (simple sequence repeats or SSR) trinucleotide markers. The study was performed in three canyons: two located in the northern part of Israel (Mount Carmel and western Upper Galilee) and one in the southern Negev desert. In each canyon, E. nidulans strains were isolated from the opposite slopes and (in the desert canyon) the valley bottom. Testing the reproductive structure of the populations indicated the presence of sexuality in the northern population and predominant clonality in the desert population. The predominantly clonal character of the desert population of E. nidulans was explained by the assumption that for relevant multilocus systems of a fungus, only several haplotypes can survive in the rather constant, extremely stressful desert conditions. Additionally, the very low density of E. nidulans populations in the soil of the desert canyon, which reduces the probability of finding a sexual partner, might favour predominant clonality via selfing. Increasing sexuality in E. nidulans populations on the north-facing slopes of the northern canyons may be a result of biotic stress (pressure of competitive fungal species), due to the more mild ecological conditions in these canyons.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The mode of reproduction in natural populations of ascomycetous fungus, Emericella nidulans, from Israel
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The mode of reproduction in natural populations of ascomycetous fungus, Emericella nidulans, from Israel
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The mode of reproduction in natural populations of ascomycetous fungus, Emericella nidulans, from Israel
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 31905, Israel. e-mail: korol@research.haifa.ac.il

References

Hide All
Aanen, D. K. & Hoekstra, R. F. (2007). Why sex is good: on fungi and beyond. In Sex in Fungi: Molecular Determination and Evolutionary Implications (ed. Heitman, J., Kronstad, J. W., Taylor, J. W. & Casselton, L. A.), pp. 527534. Washington DC: ASM Press.
Aleksenko, A., Nielsen, M. L. & Clutterbuck, A. J. (2001). Genetic and physical mapping of two centromere-proximal regions of chromosome IV in Aspergillus nidulans. Fungal Genetics and Biology 32, 4554.
Davet, P. & Rouxel, F. (2000). Detection and Isolation of Soil Fungi. Enfield, NH, USA and Plymouth, UK: Science Publisher.
Debetes, A. J. M. (1998). Parasexuality in fungi: mechanisms and significance in wild populations. In Molecular Variability of Fungal Pathogens (ed. Bridge, P., Couteaudier, Y. & Clarkson, J.), pp. 4152. Wallingford, UK: CAB International.
Domsch, K. H., Gams, W. & Anderson, T. H. (2007). Compendium of Soil Fungi. 2nd revised edn. New York: Academic Press.
Dyer, P. S. (2008). Evolutionary biology: genomic clues to original sex in fungi. Current Biology 18, 207208.
Dyer, P. S. & Paoletti, M. (2005). Reproduction in Aspergillus fumigatus sexuality in a supposedly asexual species? Medical Mycology 43, 7–14.
Elliot, C. G. (1994). Reproduction in Fungi: Genetical and Physiological Aspects. London: Chapman and Hall.
Espeso, E. A., Cobeno, L. & Arst, H. N. (2005). Discrepancies between recombination frequencies and physical distances in Aspergillus nidulans: implications for gene identification. Genetics 171, 835838.
Excoffier, L., Laval, G. & Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 4750.
Gandon, S. & Otto, S. P. (2007). The evolution of sex and recombination in response to abiotic or coevolutionary fluctuations in epistasis. Genetics 175, 18351853.
Geiser, D. M., Arnold, M. L. & Timberlake, W. E. (1994). Sexual origins of British Aspergillus nidulans isolates. Proceedings of the National Academy of Sciences of the USA 91, 23492352.
Goddard, M. R. (2007). Why bother with sex? Answers from experiments with yeast and other organisms. In Sex in Fungi: Molecular Determination and Evolutionary Implications (ed. Heitman, J., Kronstad, J. W., Taylor, J. W. & Casselton, L. A.), pp. 489506. Washington DC: ASM Press.
Grishkan, I., Nevo, E., Wasser, S. P. & Pavlicek, T. (2000). Spatiotemporal distribution of soil fungi in “Evolution Canyon”, Lower Nahal Oren, Carmel National Park, Israel. Israel Journal of Plant Sciences 48, 318330.
Grishkan, I., Korol, A. B., Nevo, E. & Wasser, S. P. (2003 a). Ecological stress and sex evolution in soil microfungi. Proceedings of the Royal Society of London, Series B 270, 1318.
Grishkan, I., Nevo, E., Wasser, S. P. & Beharav, A. (2003 b). Adaptive spatiotemporal distribution of soil microfungi in ‘Evolution Canyon’ II, Lower Nahal Keziv, western Upper Galilee, Israel. Biological Journal of the Linnean Society 78, 527539.
Grishkan, I., Beharav, A., Kirzhner, V. & Nevo, E. (2007). Adaptive spatiotemporal distribution of soil microfungi in ‘Evolution Canyon’ III, Nahal Shaharut, extreme southern Negev Desert, Israel. Biological Journal of the Linnean Society 90, 263277.
Hamilton, W., Axelrod, R. A. & Tanese, R. (1990). Sexual reproduction as an adaptation to resist parasites. Proceedings of the National Academy of Sciences of the USA 87, 35663573.
Haubold, B., Travisano, M., Rainey, P. B. & Hudson, R. R. (1998). Detecting linkage disequilibrium in bacterial populations. Genetics 150, 13411348.
Hey, J. (2000). Human mitochondrial DNA recombination: can it be true? Tree 5, 181182.
Hosid, E., Grishkan, I., Frenkel, Z., Nevo, E. & Korol, A. B. (2005). Microsatellite markers for assessing DNA polymorphism of Emericella nidulans in nature. Molecular Ecology Notes 5, 647649.
Hosid, E., Grishkan, I., Frenkel, Z., Wasser, S. P., Nevo, E. & Korol, A. B. (2008). Ecological-genomic diversity of microsatellites in natural populations of ascomycetous fungus Emericella nidulans in Israel. Mycological Progress 7, 99–109.
Kap-Hoon, H., Dong-Beom, L., Jong-Hak, K., Min-Su, K., Kyu-Yong, H., Won-Shin, K., Young-Soon, P., Heui-Baik, K. & Dong-Min, H. (2003). Environmental factors affecting development of Aspergillus nidulans. Journal of Microbiology 41, 3440.
Katz Ezov, T., Boger-Nadjar, E., Frenkel, Z., Katsperovski, I., Kemeny, S., Nevo, E., Korol, A. & Kashi, Y. (2006). Molecular-genetic biodiversity in a natural population of the yeast Saccharomyces cerevisiae from “Evolution Canyon”: microsatellite polymorphism, ploidy and controversial sexual status. Genetics 174, 14551468.
Klich, M. A. (2002). Identification of Common Aspergillus Species. The Netherlands: Centraalbureau voor Schimmelcultures.
Korol, A. B., Preygel, I. A. & Preygel, S. I. (1994). Recombination Variability and Evolution. London: Chapman and Hall.
Levin, D. A. (1975). Pest pressure and recombination systems in plants. American Naturalist 109, 437451.
Maynard Smith, J. (1978). The Evolution of Sex. Cambridge: Cambridge University Press.
Maynard Smith, J., Smith, N. H., O'Rourke, M. & Spratt, B. G. (1993). How clonal are bacteria? Proceedings of the National Academy of Sciences of the USA 90, 43844388.
Milgroom, M. G. (1996). Recombination and the multilocus structure of fungal populations. Annual Review of Phytopathology 34, 457477.
Murtagh, G. J., Dyer, P. S. & Crittenden, P. D. (2000). Sex and the single lichen. Nature 404, 564.
Nasrallah, M. E., Liu, P., Sherman-Broyles, S., Boggs, N. A. & Nasrallah, J. B. (2004). Natural variation in expression of selfincompatibility in Arabadopsis thaliana: Implications for the evolution of selfing. Proceedings of the National Academy of Sciences of the USA 101, 1607016074.
Nevo, E. (2001). Evolution of genome-phenome diversity under environmental stress. Proceedings of the National Academy of Sciences of the USA 98, 62336240.
O'Gorman, C. M., Fuller, H. T. & Dyer, P. S. (2009). Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457, 471475.
Otto, S. P. & Gerstein, A. C. (2006). Why have sex? The population genetics of sex and recombination. Biochemical Society Transactions 34, 519522.
Pavlicek, T., Sharon, D., Kravchenko, V., Saaroni, H. & Nevo, E. (2003). Microclimatic interslope differences underlying biodiversity contrasts in ‘Evolution Canyon’, Mt. Carmel, Israel. Israel Journal of Earth Sciences 52, 19.
Pontecorvo, G. (1956). The parasexual cycle in fungi. Annual Review of Microbiology 10, 393400.
Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, K. D & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advances in Genetics 5, 141238.
StatSoft, Inc. (1996). Statistica for Windows (Computer Program Manual). Tulsa, OK: StatSoft, Inc.
Stukenbrock, E. H. & Rosendahl, S. (2005). Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores. Molecular Ecology 14, 743752.
Taylor, J. W., Geiser, D. M., Burt, A. & Koufopanou, V. (1999). The evolutionary biology and population genetics underlying fungal strain typing. Clinical Microbiology Reviews 12, 126146.
Tsai, I. J., Bensasson, D., Burt, A. & Koufopanou, V. (2008). Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proceedings of the National Academy of Sciences of the USA 105, 49574962.
Tuthill, D. E. (2004). Genetic variation and recombination in Penicillium miczynskii and Eupenicillium species. Mycological Progress 3, 3–12.
Volz, P., Ellanskaya, I. A., Grishkan, I., Wasser, S. P. & Nevo, E. (2001). Soil Microfungi of Israel. Ruggell: A. R. A. Ganter Verlag K.-G.
Walser, J. C., Gugerli, F., Holderegger, R., Kuonen, D. & Scheidegger, C. (2004). Recombination and clonal propagation in differentpopulations of the lichen Lobaria pulmonaria. Heredity 93, 322329.

The mode of reproduction in natural populations of ascomycetous fungus, Emericella nidulans, from Israel

  • E. HOSID (a1), I. GRISHKAN (a1), E. YUSIM (a1), Z. FRENKEL (a1), S. P. WASSER (a1), E. NEVO (a1) and A. KOROL (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed