Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-18T03:01:13.864Z Has data issue: false hasContentIssue false

Mitochondrial DNA heteroplasmy maintained in natural populations of Drosophila simulans in Réunion

Published online by Cambridge University Press:  14 April 2009

Etsuko T. Matsuura*
Affiliation:
Department of Biology, Ochanomizu University, Ohtsuka 2–1–1, Bunkyo-ku, Tokyo 112, Japan
Haruyo Fukuda
Affiliation:
Department of Biology, Ochanomizu University, Ohtsuka 2–1–1, Bunkyo-ku, Tokyo 112, Japan
Sadao I. Chigusa
Affiliation:
Department of Biology, Ochanomizu University, Ohtsuka 2–1–1, Bunkyo-ku, Tokyo 112, Japan
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mitochondrial DNA (mtDNA) variation in Drosophila simulans was studied to determine whether the cytoplasmic state of mtDNA heteroplasmy persists in natural populations in Réunion. For this purpose, 172 isofemale lines, newly collected from two local populations, were examined, among which three types of mtDNA (siII, siIII and siIII′) were found, based on the Hpa II restriction pattern. Ten of the lines were heteroplasmic for a combination of siII and siIII, as determined by autoradiography. The same type of heteroplasmy had been noted in one of the two local populations 8 years before (Satta et al. 1988). The present results suggest that the heteroplasmic state occurs recurrently in natural populations of D. simulans in Réunion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Baba-Aïssa, F., Solignac, M., Dennebouy, N. & David, J. R. (1988). Mitochondrial DNA variability in Drosophila simulans: quasi absence of polymorphism within each of the three cytoplasmic races. Heredity 61, 419426.CrossRefGoogle ScholarPubMed
Bermingham, E., Lamb, T. & Avise, J. C. (1986). Size polymorphism and heteroplasmy in the mitochondrial DNA of lower vertebrates. Journal of Heredity 77, 249252.Google Scholar
Densmore, L. D., Wright, J. W. & Brown, W. M. (1985). Length variation and heteroplasmy are frequent in mitochondrial DNA from parthenogenetic and bisexual lizards (genus Cnemidophorus). Genetics 110, 689707.Google Scholar
de Stordeur, E., Solignac, M., Monnerot, M. & Mounolou, J.-C. (1989). The generation of transplasmic Drosophila simulans by cytoplasmic injection: effects of segregation and selection on the perpetuation of mitochondrial DNA heteroplasmy. Molecular and General Genetics 220, 127132.Google Scholar
Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. (1980). Maternal inheritance of human mitochondrial DNA. Proceedings of the National Academy of Sciences, USA 77, 67156719.Google Scholar
Hale, L. R. & Singh, R. S. (1986). Extensive variation and heteroplasmy in size of mitochondrial DNA among geographic populations of Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 83, 88138817.CrossRefGoogle ScholarPubMed
Harrison, R. G., Rand, D. M. & Wheeler, W. C. (1985). Mitochondrial DNA size variation within individual crickets. Science 228, 14461448.Google Scholar
Hauswirth, W. W. & Clayton, D. A. (1985). Length heterogeneity of a conserved displacement-loop sequence in human mitochondrial DNA. Nucleic Acids Research 13, 80938104.Google Scholar
Kondo, R., Satta, Y., Matsuura, E. T., Ishiwa, H., Takahata, N. & Chigusa, S. I. (1990). Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics (in press).Google Scholar
Lansman, R. A., Avise, J. C. & Huettel, M. D. (1983). Critical experimental test of the possibility of ‘paternal leakage’ of mitochondrial DNA. Proceedings of the National Academy of Sciences, USA 80, 19691971.CrossRefGoogle ScholarPubMed
Matsuura, E. T., Chigusa, S. I. & Niki, Y. (1989). Induction of mitochondrial DNA heteroplasmy by intra- and interspecific transplantation of germ plasm in Drosophila. Genetics 122, 663667.CrossRefGoogle ScholarPubMed
Matsuura, E. T., Chigusa, S. I. & Niki, Y. (1990). Differences in the modes of transmission of foreign mitochondrial DNA in heteroplasmic lines for intra- and interspecific combinations in Drosophila melanogaster. The Japanese Journal of Genetics 65, 8793.Google Scholar
Monnerot, M., Mounolou, J.-C. & Solignac, M. (1984). Intra-individual length heterogeneity of Rana esculenta mitochondrial DNA. Biology of the Cell 52, 213218.Google Scholar
Niki, Y., Chigusa, S. I. & Matsuura, E. T. (1989). Complete replacement of mitochondrial DNA in Drosophila. Nature 341, 551552.Google Scholar
Rand, D. M. & Harrison, R. G. (1986). Mitochondrial DNA transmission genetics in crickets. Genetics 114, 955970.Google Scholar
Satta, Y., Toyohara, N., Ohtaka, C., Tatsuno, Y., Watanabe, T. K., Matsuura, E. T., Chigusa, S. I. & Takahata, N. (1988). Dubious maternal inheritance of mitochondrial DNA in D. simulons and evolution of D. mauritiana. Genetical Research, Cambridge 52, 16.CrossRefGoogle Scholar
Solignac, M., Génermont, J., Monnerot, M. & Mounolou, J.-C. (1984). Genetics of mitochondria in Drosophila: mtDNA inheritance in heteroplasmic strains of D. mauritiana. Molecular and General Genetics 197, 183188.Google Scholar
Solignac, M., Monnerot, M. & Mounolou, J.-C. (1983). Mitochondrial DNA heteroplasmy in Drosophila mauritiana. Proceedings of the National Academy of Sciences, USA 80, 69426946.CrossRefGoogle ScholarPubMed
Solignac, M., Monnerot, M. & Mounolou, J.-C. (1986). Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. Journal of Molecular Evolution 23, 3140.Google Scholar
Wallis, G. P. (1987). Mitochondrial DNA insertion polymorphism and germ line heteroplasmy in the Triturus cristatus complex. Heredity 58, 229238.Google Scholar