Skip to main content Accessibility help
×
Home

Mapping quantitative trait loci for body weight on the X chromosome in mice. II. Analysis of congenic backcrosses

  • KELLIE A. RANCE (a1), SIMON C. HEATH (a2) and PETER D. KEIGHTLEY (a1)

Abstract

In a QTL mapping study with an F2 population of mice, we have shown that one or more sex-linked factors account for a large part of the divergence between mouse lines selected for high and low body weight. Here, we describe a study undertaken to map the putative X-linked quantitative trait loci (QTLs) by backcrossing segments of chromosome from the high line onto an inbred line derived from the low line, thereby removing possible contributions from the autosomes and linked segments of the X chromosome. Sublines containing a regional at the proximal end of the X chromosome were found to be associated with large differences in body weight, and to account for almost all the difference between the lines. A Markov chain Monte Carlo based multipoint linkage analysis incorporating the available marker and phenotypic information from the backcross pedigree was used to map the QTL to a region of about 6 cM. There was no evidence for QTLs elsewhere on the chromosome. The estimated QTL effect is approximately 20% of mean body weight in males and females at 10 weeks. From results obtained from this study and the accompanying F2 analysis, we conclude the presence of a single factor for body weight localizing to about position (±SE) 26·4±1·2 cM on the X chromosome, which increases body weight by approximately 18% at 10 weeks. A strategy to positionally clone the QTL is discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mapping quantitative trait loci for body weight on the X chromosome in mice. II. Analysis of congenic backcrosses
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mapping quantitative trait loci for body weight on the X chromosome in mice. II. Analysis of congenic backcrosses
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mapping quantitative trait loci for body weight on the X chromosome in mice. II. Analysis of congenic backcrosses
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Tel: +44 (0)131 650 5443. Fax: +44 (0)131 667 3210. e-mail: p.keightley@edinburgh.ac.uk.

Mapping quantitative trait loci for body weight on the X chromosome in mice. II. Analysis of congenic backcrosses

  • KELLIE A. RANCE (a1), SIMON C. HEATH (a2) and PETER D. KEIGHTLEY (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed